Skip to main content

A Novel Algorithm for Radar Classification based on Doppler Characteristics Exploiting Orthogonal Pseudo-Zernike Polynomials

You are here

Phase modulation induced by target micro-motions introduces side-bands in the radar spectral signature returns. Time-frequency distributions facilitate the representation of such modulations in a micro-Doppler signature that is useful in the characterization and classification of targets. Reliable micro- Doppler signature classification requires the use of robust features that is capable of uniquely describing the micro-motion. Moreover, future applications of micro-Doppler classification will require meaningful representation of the observed target by using a limited set of values. In this paper, the application of the pseudo-Zernike moments for micro-Doppler classification is introduced. Specifically, the proposed algorithm consists in the extraction of the pseudo-Zernike moments from the Cadence Velocity Diagram (CVD). The use of pseudo-Zernike moments allows invariant features to be obtained that are able to discriminate the content of two-dimensional matrices with a small number of coefficients. The analysis has been conducted both on simulated and on real radar data, demonstrating the effectiveness of the proposed approach for classification purposes.

C. Clemente

Field of Interest

“The field of interest shall be the organization, systems engineering, design, development, integration, and operation of complex systems for space, air, ocean, or ground environments. These systems include but are not limited to navigation, avionics, mobile electric power and electronics, radar, sonar, telemetry, military, law-enforcement, automatic test, simulators, and command and control."


Technology Navigator


Enter the characters shown in the image.