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Why this Publication? IEEE Aerospace & Electronic Systems Magazine
articles apprise readers of new developments,
new applications of old technology, and news of
society members, meetings, and related items; IEEE
Transactions on Aerospace and Electronic Systems
publishes novel, previously unpublished material of a
technical nature.

What about those items that fall between these two
diametric criteria?

This publication is our answer.
Future Tutorials will be forthcoming if they are

useful and well received—as determined by your
feedback.

We want to hear from you! Please direct
comments—pro and con—to Peter Willett as this
publication is his idea; he assumed the task of
obtaining and managing the refereeing of these initial
contributions. Peter explains what a tutorial is—and is
not—on the following page.

Thanks are extended to Russ Lefevre, President,
Ed Reedy, Vice-President of Publications, and the
editorial and production staffs of both Transactions
and Systems for their outstanding cooperation,
knowledge, and assistance in bringing this initial issue
to you.

Joel F. Walker
Assistant Vice President–

Publications, IEEE/AESS
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What is an AESS Tutorial?

It is a rare article from which nothing is to be
learnt, so what do we mean here by tutorial? For
me, there are two kinds of tutorial articles: Those
that provide a primer on an established topic, and
those that let us in on the ground floor of something
of emerging importance. In this, our initial issue, we
have exemplars of each.
The first sort is excellently represented by the

articles from Samuel Blackman and William Melvin.
In both cases we have a noted expert who has been
gracious (and brave) enough to have written us a field
guide, respectively, to the MHT and to STAP. If you
want to program an MHT you had better buy Sam’s
book (coauthored by Robert Popoli); but if you’ve
heard the acronym and just want to know what it’s
all about, read what he writes here. New results on
STAP appear almost to quickly to digest; but for an
orientation, take a look at what Bill has given us in
this issue.
The articles by Paul Baggenstoss and Ronald

Mahler epitomize the other sort of tutorial. Here we
have two very strong researchers who have each been
laboring on a topic for some years. I have seen many
of their presentations and followed much of their
progress over that time. Interest in their respective
areas is growing markedly, but I expect that many
readers will not yet be aware of them. For many
readers you will see it here first.
I like both sorts of tutorials very much. But as

Associate Editor for both our transactions and our
magazine, I know that there has been no logical
place for them in the IEEE AES society until now.
We hope, with these tutorials, that we can give them
a home, a welcome, and provide a service to our
membership.

We do not intend to publish Tutorials on a regular
basis, but we hope to deliver them once or twice per
year. We need good, useful tutorial articles (both
kinds!) in relevant AESS areas. If you, the reader, can
offer a topic of interest and an author to write about it,
please contact me. Self-nominations are welcome, and
even more ideal is a suggestion of an article that the
editor(s) can solicit. All articles will be reviewed in
detail. Criteria on which they will be judged include
their clarity of presentation, their relevance and
likely audience, and, of course, their correctness and
scientific merit. As to the mathematical level, the
articles in this issue are a good guide; In each case
the author has striven to explain complicated topics
in simple (well, tutorial) terms. There should be no
(or very little) novel material. The home for archival
science is our Transactions, and submissions that need
to be properly peer-reviewed will be rerouted there.
Likewise, articles that are interesting and descriptive,
but lack significant tutorial content, ought more
properly be submitted to Systems Magazine.

Despite Joel’s kind words, these Tutorials are an
idea for which credit ought to be spread to many
quarters: Russ Lefevre, Ed Reedy, Ron Schroer,
Dale Blair, and especially to Dave Dobson and Joel
Walker himself. I hope these Tutorials turn out
to be successful and useful, and, if they do, it is
these individuals we should thank. I would like to
echo Joel’s request for inputs. We welcome your
suggestions for topics and authors for future issues, as
well as your thoughts and criticisms on the way that
this issue has been structured. This is a new initiative,
we are open to ideas. My contact information is on
the inside front cover.

Peter K. Willett
Associate Editor,
IEEE Aerospace & Electronic

Systems Magazine
Editor for Target Tracking

and Multisensor Systems,
IEEE Transactions on Aerospace and

Electronic Systems
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Multiple Hypothesis Tracking
For Multiple Target Tracking

SAMUEL S. BLACKMAN
Raytheon

Multiple hypothesis tracking (MHT) is generally accepted as

the preferred method for solving the data association problem

in modern multiple target tracking (MTT) systems. This paper

summarizes the motivations for MHT, the basic principles behind

MHT and the alternative implementations in common use. It

discusses the manner in which the multiple data association

hypotheses formed by MHT can be combined with multiple filter

models, such as used by the interacting multiple model (IMM)

method. An overview of the studies that show the advantages of

MHT over the conventional single hypothesis approach is given.

Important current applications and areas of future research and

development for MHT are discussed.

Manuscript received February 22, 2003; revised April 27, 2003.

Author’s current address: Raytheon, RE/R07/P572, PO Box 920, El
Segundo, CA 90245, E-mail: (ssblackman@raytheon.com).

0018-9251/04/$17.00 c� 2004 IEEE

I. INTRODUCTION

Target tracking is an essential requirement for
surveillance systems employing one or more sensors,
together with computer subsystems, to interpret
the environment. Typical sensor systems, such as
radar, infrared (IR), and sonar, report measurements
from diverse sources: targets of interest, physical
background objects such as clutter, or internal error
sources such as thermal noise. The target tracking
objective is to collect sensor data from a field of view
(FOV) containing one or more potential targets of
interest and to then partition the sensor data into sets
of observations, or tracks that are produced by the
same object (or target). Note that the term target is
used in a general sense. Once tracks are formed and
confirmed (so that background and other false targets
are reduced), the number of targets of interest can
be estimated and quantities, such as target velocity,
future predicted position, and target classification
characteristics, can be computed for each track.

Since most surveillance systems must track
multiple targets, multiple target tracking (MTT) is
the most important tracking application. Fig. 1, taken
from [1], shows the basic elements of a typical MTT
system. Assume that tracks have been formed from
previous data and a new set of input observations
becomes available. In general observations can be
received at regular intervals of time (scans or data
frames) or they can occur irregularly in time. Here,
we will use the general term scan to refer to any
set of input measurements that were all produced
at the same time. Then, the input observations are
considered for inclusion in existing tracks and for
initiation of new tracks. First, a gate, based upon
the maximum acceptable measurement plus tracking
prediction error magnitudes, is placed around the
predicted track. Only those observations that are
within the track gate are considered for update of
the track. When closely spaced targets produce
closely spaced observations there will be conflicts
such that there may be multiple observations within
a track’s gate and an observation may be within
the gates of multiple tracks. This is handled by
the Observation-to-Track Association and Track
Maintenance functions.

Fig. 2, also taken from [1], shows a typical conflict
situation in which track gates are placed around
the predicted positions (P1, P2) of two tracks, and
three observations (O1, O2, O3) satisfy the gates
of either (or both) of the tracks. The conventional
data association method is denoted the global nearest
neighbor (GNN) approach. It finds the best (most
likely) assignment of input observations to existing
tracks, which for example, would probably be O1
to track 1 and O2 to track 2. The term global is
used to refer to the fact that the assignment is made
considering all possible (within gates) associations

IEEE A&E SYSTEMS MAGAZINE VOL. 19, NO. 1 JANUARY 2004 PART 2: TUTORIALS—BLACKMAN 5



Fig. 1. Basic elements of a conventional MTT system.

Fig. 2. Example of typical data association conflict situation.

under the constraint that an observation can be
associated with at most one track. This distinguishes
GNN from the archaic (but apparently still used in
some systems) nearest neighbor (NN) approach in
which a track is updated with the closest observation
even if that observation may also be used by another
track.
Only those tracks that are included in the best

assignment are kept. Unassigned observations, in this
case O3, initiate new tracks. Track confirmation and
deletion are typically determined by rules, such as 3
detections in 4 frames of data for confirmation and
N consecutive misses (typically N = 4 to 7) for track
deletion.
Inherent in the standard GNN assignment is the

assumption that an observation was produced by a
single target. Tracks that do not share any common
observations will be defined to be compatible. Thus,
only compatible tracks can appear in the same
assignment solution. Relaxation of this constraint
to allow for the provision of unresolved targets that
produce a single measurement will be discussed later.
Once observations are assigned to tracks, these

tracks are updated during the filtering process.
Conventional systems typically use a single Kalman
filter. However, as discussed below, modern systems
should use the interacting multiple model (IMM)
approach in which several Kalman filters, tuned to
different types of target maneuver, are run in parallel
[1, 2]. Finally, all tracks are predicted to the time
of the next set of measurements. The Kalman filter

prediction covariances provide the uncertainty, in the
predicted state estimate, that is required for the gating
and association processes.

The GNN approach, which only considers the
single most likely hypothesis for track update and
new track initiation, only works well in the case of
widely spaced targets, accurate measurements, and
few false alarms in the track gates. For example, from
results given in [1], even if the true target return is
present, a single uniformly distributed false alarm
in a three dimensional radar measurement space
(typically range and 2 angles) reduces the probability
of correct association to about 0.85. Thus, in about
one out of 6 track update attempts a false alarm
will be chosen rather than the correct target return.
For the more usual case of multiple closely spaced
targets and where missed true target detections occur,
the probability of false track update is much worse.
Experience indicates that often a single false update
will lead to track loss and two consecutive false
updates will usually lead to track loss.

The fact that misassociation represents an
additional error source for a Kalman filter tracker
was recognized in the very early stages of tracker
development [3–5]. One approach that was proposed
to improve GNN performance was to increase
the Kalman filter covariance matrix to reflect this
additional source of uncertainty [3, 4]. A similar
approach, based upon work by R. Fitzgerald, also
reduces the gain for uncertain association conditions,
Sec. 6.12.1 of [1].

A second approach, which has become the Joint
Probabilistic Data Association (JPDA) method,
“hedges” for uncertain association conditions by
allowing a track to be updated by a weighted (by
probability) sum of all observations in its gate [2, 5].
This also means that an observation may contribute
to the update of more than one track. Thus, for the
example of Fig. 2, observations O1, O2, and O3
would all contribute to the update of track 1 and
observations O2 and O3 would contribute to the
update of both tracks.

Both the augmented GNN approach and the JPDA
method increase the Kalman filter track covariance
matrix to account for the association uncertainty.
However, as illustrated in [6], increasing the Kalman
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filter covariance matrix to account for uncertain
association can exacerbate the problem whereby
an increased covariance matrix leads to even more
false observations in the track gate, etc. Also, the
JPDA method suffers from a coalescence problem
whereby tracks on closely spaced targets will tend to
come together [7]. For example, from Fig. 2, since
observations O2 and O3 will contribute to the updates
of tracks 1 and 2, these tracks will be drawn together.
The problems that result from relatively simple

upgrades to the GNN method and the recent dramatic
increases in computational capabilities have led to a
near universal acceptance of the multiple hypothesis
tracking (MHT) approach as the preferred data
association method for modern systems. MHT
is a deferred decision logic in which alternative
data association hypotheses are formed whenever
observation-to-track conflict situations, such as shown
in Fig. 2, occur. Then, rather than choosing the best
hypothesis or, in effect, combining the hypotheses as
in the JPDA method, the hypotheses are propagated
into the future in anticipation that subsequent data will
resolve the uncertainty.
Sections II and III will discuss the basic principles

and commonly used implementations of MHT. Section
IV discusses how modern filtering techniques (in
particular IMM) can be combined with MHT. Section
V outlines some important current applications of
MHT and Section VI gives areas of development and
extension.

II. MHT BASICS

The manner in which MHT forms multiple
hypotheses and manages these hypotheses is
illustrated by again referring to the example given in
Fig. 2 and by referring to the overall structure shown
in Fig. 3. As an example, assume that tracks T1 and
T2 with predicted positions P1 and P2, represent
a hypothesis (H1) prior to the receipt of the three
observations (O1, O2, O3) on the current scan. Then,
there are 10 feasible hypotheses that can be generated
from the initial single hypothesis. For example, the
two most likely hypotheses would both update T1
with O1 but would update T2 with either O2 or O3.
Another, unlikely but feasible, hypothesis would be
that all observations represent new sources (false
alarms or other previously undetected targets) so
that neither T1 nor T2 would be updated and all
observations would start new tracks.

Reid’s Algorithm

Although Singer, Sea, and Housewright
[8] introduced the basic idea of propagating
multiple hypotheses for a single target in a false
alarm background, Reid [9] first developed a

Fig. 3. MHT logic overview.

complete algorithmic approach. Reid’s algorithm
defines a systematic way in which multiple data
(observation-to-track) association hypotheses can be
formed and evaluated for the problem of multiple
targets in a false alarm (and/or clutter) background.
Again using the example of Fig. 2, Reid’s algorithm
is illustrated by defining H1 to be the hypothesis
containing T1 and T2 before the receipt of the three
observations. Next, define a newly formed track

T3 (T1, O1) = track 3 formed from the
association of T1 with O1

with similar definitions for T4 (T2, O2) and T5
(T2, O3). Also define NT1, NT2, and NT3 to be the
new tracks initiated from O1, O2, and O3. Then, 3 of
the feasible 10 hypotheses that can be formed are

H1: T1, T2, NT1, NT2, NT3

H2: T3, T4, NT3

H3: T3, T5, NT2

...

(1)

Tracks are defined to be compatible if they have
no observations in common. As illustrated by the
example above, assuming T1 and T2 share no
observations, MHT hypotheses are composed of
sets of compatible tracks. Again note, as discussed
in more detail later, the formulation can ideally
be expanded in order to address the problem of
closely-spaced unresolved targets that may produce
a single measurement that should be assigned to the
multiple tracks that may have been formed on these
unresolved targets. Using Reid’s algorithm approach,
hypotheses are carried over from the previous scan.
Then, on the receipt of new data, each hypothesis is
expanded into a set of new hypotheses by considering
all observation-to-track assignments for the tracks
within the hypothesis. Again, as new hypotheses are
formed, the compatibility constraint for tracks within a
hypothesis is maintained.

Track and Hypothesis Evaluation

The evaluation of alternative track formation
hypotheses requires a probabilistic expression that
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includes all aspects of the data association problem.
These aspects include the prior probability of target
presence, the false alarm density, the detection
sequences and the dynamic (kinematic) consistency
of the observations contained in the tracks. Reid
[9] presents such a probabilistic expression. A
mathematically equivalent, but computationally
preferable, approach is the log-likelihood ratio, LLR
(or track score) first proposed in the pioneering paper
by Sittler [10], later detailed in [11] and summarized
below.
A likelihood ratio (LR) for the formation of

a given combination of data (including a priori
probability data) into a track can be defined using
a recursive relationship that follows directly from
Bayes’ rule

LR =
p(D �H1)P0(H1)
p(D �H0)P0(H0)

¢
=
PT
PF

(2)

Hypotheses H1 and H0 are the true target and false
alarm hypotheses with probabilities PT and PF ,
respectively, and D is the data, so that

p(D �Hi) = probability density function
evaluated with the received
data under the assumption that
Hi is correct

P0(Hi) = a priori probability of Hi
(such as expected density of
true targets in a given area for H1)

Note that the inclusion of a priori probabilities in
(2) means that LR might formally be defined to be
a probability ratio. However, following the original
formulation of [10], we will refer to it as a likelihood
ratio.
A true target is most generally defined to be an

object that will persist in the tracking volume for
at least several scans. Thus, this definition includes
objects, such as persistent clutter, that may not be
of interest to the tracking system but that should be
tracked in order to minimize their interference with
tracks on targets of interest. False alarms (or false
targets) refer to erroneous detection events (such as
those caused by random noise or clutter) that do not
persist over several scans.
It is convenient to use the log likelihood ratio

(LLR) or track score [10, 11] such that

LLR= ln[PT � PF] (3)

Then, LLR can be directly converted to the probability
of a true target through

PT=PF =
PT

1�PT
= eLLR

PT = e
LLR=[1+ eLLR]

(4)

Thus, the LLR (track score) is all that needs to be
computed (and maintained) in order to assess the
validity of a track. Finally, as discussed further
below, the track score can be used directly for
track confirmation as an application of the classical
sequential probability ratio test (SPRT).

The track score, L(k), at scan k, can be placed in a
convenient recursive form [1, 11]

L(k) = L(k� 1)+¢L(k)

¢L(k) =
�
ln(1� P̂D); no update on scan k

¢Lu(k); track update on scan k

(5)

The loss in track score when a detection opportunity
is missed is a function of the expected probability
of detection (P̂D). As discussed in more detail in
[1, 11], the gain, ¢Lu, in track score upon update
is a function of the residual error (the difference
between the measurement and the prediction) and
its covariance matrix, the expected density of false
returns, as well as P̂D. In addition, if signal intensity
(such as signal-to-noise ratio, SNR) is measured, it
may also be used in the track score.

Given the individual track scores, the hypothesis
score is the sum of scores of all tracks contained
in that hypothesis. Then, given hypothesis scores,
the hypothesis probabilities can be computed
[1, 11]. Finally, a track may be contained in multiple
hypotheses so that its probability is the sum of
probabilities of all hypotheses which contain it. For
the example of (1), the probability of T3 would be the
sum of probabilities for hypotheses H2, H3 and all
other hypotheses that contain it.

To summarize, relatively simple computations
can be performed to determine hypothesis and track
probabilities. A theoretical objection that may be
raised is that in order to compute these probabilities,
such as through the track score as defined above, it is
typical to assume very approximate Gaussian models
for target dynamics and measurement error statistics,
uniform distributions for false alarms (clutter and
noise) and new targets and a nominal P̂D. However, all
developers of practical MHT systems make essentially
the same assumptions and, as discussed further
below, results show that MHT with these assumptions
performs substantially better than any other developed
approach.

Practical Issues

As illustrated by the simple example given above,
there is clearly a potential combination explosion in
the number of hypotheses (and tracks within those
hypotheses) that an MHT system can generate. Thus,
a number of techniques have been developed to keep
this potential growth in check. These techniques,
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Fig. 4. Family (node) structure with N-scan pruning.

outlined next, include clustering, hypothesis and track
pruning (deletion), and track merging.
The operation of clustering is performed to reduce

the number of hypotheses that must be generated and
evaluated. Clusters are collections of tracks that are
linked by common observations. A cluster can include
tracks that do not share observations directly. Thus, if
track 1 shares an observation with track 2 and track 2
shares an observation with track 3, all three tracks are
in the same cluster.
Clustering, in effect, decomposes a large problem

into a set of smaller problems. Once clustering has
been performed, the processing within each cluster
can be done independently from other clusters. Thus,
processing efficiencies can be achieved using a
parallel processing structure whereby the processing
for each cluster can be assigned to a separate
processor. Then, within each cluster, hypotheses are
evaluated and low probability hypotheses and tracks
are deleted.
The key principle of the MHT method is that

difficult data association decisions are deferred
until more data are received. Thus, an important
implementation feature used by all MHT developers
is the family (or node) structure illustrated in Fig. 4.
This structure provides a convenient mechanism
for implementing a deferred decision logic and for
presenting a coherent output from the MHT tracker to
the user.
Fig. 4 shows how MHT track branches are formed

and illustrates how a convenient structure for track
pruning can be defined. Using this structure, a family
is defined as a set of tracks with a common root node.
Alternatively, what we define to be a family (of tracks
all emanating from a single ancestor, or root node)
can also be considered to be a target tree. Each branch
represents a different data association hypothesis for
the target and nodes are defined to be points where
one track forms two or more branches. Because each
branch track within the family (target tree) has at least
one common node (the root node), these tracks are
all incompatible with each other and can represent at
most one target.

Based upon current data (including scan k),
irrevocable decisions are made in the past (for the
example this is scan k� 2). Specifically, one approach
finds the tracks from families F1 and F2 that are in
the best current (scan k) hypothesis and goes back
N scans (in this case N = 2) to establish a new root
node. For example, if track 2 of F1 is in the best
hypothesis, the new root node is track 2 at scan k� 2.
Subject to other tests, beyond the scope of this paper,
if F2 does not have a track in the best hypothesis, the
entire family would be deleted.

Note that the entire branch of F1 leading to tracks
1, 4, and 8 has been deleted. However, track 9 has
been maintained even though track 2 was in the best
hypothesis. This method is denoted N-scan pruning
(or can be defined as an N-scan sliding window) and
we have, for convenience of presentation, chosen
N = 2 for the example. In practice, our experience
is that N should generally be chosen to be at least
5. Also, rather than scans in the past, the decision is
probably best made using N observations in the past
but the basic principle is the same. Firm decisions are
made in the past based upon later data.

Fig. 5, adapted from [12], shows the relationship
between the families (track hypotheses for a given
target) and the global (multiple track) hypotheses
that are formed as collections of compatible tracks.
A global hypothesis is formed by choosing at most a
single track from each family.

The family representation of Fig. 4 also provides
a convenient way to present MHT data to a user
who typically wants one track per target, not a set
of alternative tracks with probabilities. The tracks
in the output trackfile are linked to the families
and, at any given time, the most likely track in the
family is presented to the user. This can lead to some
apparent inconsistencies in the output as MHT branch
probabilities change with the receipt of more data.
For example, it may be that track 1 of F1 was the
most likely track at scan k� 1 but track 2 is the most
likely track at scan k. Thus, a possible alternative
is to provide an average state estimate, computed
using the branch track probabilities, along with a
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Fig. 5. Formation of hypotheses from tracks in families.

covariance that reflects the spread in the branch track
state estimates. This approach is particularly useful
for an agile beam radar system, discussed below, for
which data association uncertainty should be used in
the resource allocation logic.

III. ALTERNATIVE MHT IMPLEMENTATIONS

Although the same basic principles and
mathematical models apply to all, there are several
different approaches to MHT implementation.
The first (hypothesis-oriented) approach follows
the original work of Reid, outlined above. The
computational feasibility of this approach has been
greatly enhanced by the use of Murty’s algorithm
[13] to more efficiently generate hypotheses [14].
An alternative, track-oriented approach [1, 12] does
not maintain hypotheses from scan to scan. As tracks
are updated on each scan they are reformed into
hypotheses. An innovative implementation of the
track-oriented approach is the multidimensional (or
multiple frame) assignment method [15, 16]. Finally,
a Bayesian MHT approach has been proposed by
van Keuk and Koch and associates [6, 17, 18]. The
methods are briefly summarized below.

m-Best Implementation of Reid’s Algorithm

As illustrated above, Reid’s algorithm forms
a large number of hypotheses that are collections
of compatible tracks. These hypotheses are carried
from one scan to the next where newly received
observations are used to update the tracks in different
ways. Thus, each hypothesis carried from the previous
scan may give rise to many new hypotheses (most

of which will later be discarded based upon low
probability) as the tracks contained within the
hypothesis are updated in different ways. This
potential explosion of new hypotheses that may
result from an indiscriminate expansion of the
old hypotheses has been a barrier to the practical
implementation of Reid’s algorithm. Thus, a method
to only generate “good” hypotheses is required and
has been provided by the work of Cox et al. [14].

As discussed in [14], an efficient implementation
of Reid’s algorithm can be achieved using Murty’s
method for finding the m-best solutions to the
assignment problem. Using this approach, given
mp(k� 1) hypotheses from the previous scan, the
number of hypotheses formed on the current scan
can be limited to m(k) when m is an input parameter
that could be set a priori or, presumably, could be
chosen adaptively. The important principle is that the
generation of many unconsequential, low probability
hypotheses, that resulted from earlier implementations
of Reid’s algorithm, is avoided.

Track-Oriented MHT

The track-oriented approach recomputes the
hypotheses using the newly updated tracks after each
scan of data are received. Rather than maintaining,
and expanding, hypotheses from scan to scan, the
track-oriented approach discards the hypotheses
formed on scan k� 1. The tracks that survive pruning
are predicted to the next scan k where new tracks are
formed, using the new observations, and reformed
into hypotheses. Except for the necessity to delete
some tracks based upon low probability or N-scan
pruning described above, no information is lost
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because the track scores, that are maintained, contain
all the relevant statistical data. The basic, currently
unresolved, issue is whether it is more efficient to
expand the old hypotheses using Murty’s method or
to reform the hypotheses using the updated tracks and
their compatibilities with other tracks.
A strong argument for the track-oriented approach

to MHT can be made by noting that the combinatories
of hypothesis formation are such that there are
typically many more hypotheses formed than tracks.
Typically, for difficult scenarios, there may be several
thousand comparable hypotheses formed from several
hundred tracks in a cluster. Then, the process of
maintaining a thousand (or more) hypotheses and
expanding these hypotheses using Murty’s method
to find the best thousand new hypotheses may be
prohibitive. On the other hand, our experience with
track-oriented MHT has shown that several hundred
tracks can easily be maintained and expanded into
new hypotheses for difficult scenarios. Typical
computational results for a difficult scenario with 100
closely spaced targets and a high radar update rate
indicate the feasibility of real-time operation for a
track-oriented MHT [19]. This study was performed
using a single 866 Mhz Pentium III computer. Newer
computers and/or parallel processing with several
computers would allow real-time tracking for even
more difficult scenarios.
Our implementation uses a relatively simple set of

heuristic search methods, based upon a breadth-first
method described in [1] and the A* search method
described in [20]. The multiframe assignment (MFA)
method, outlined next, represents a potentially more
accurate and efficient implementation of track-oriented
MHT.

Multi Dimensional (Multiframe) Assignment

Deb [15] and Poore [16] and their associates
independently recognized that the MTT data
association problem can be placed in a form where
a multi dimensional assignment approach that uses the
Lagrangian relaxation method is directly applicable.
Like track-oriented MHT, this approach forms and
maintains tracks from scan (frame) to scan and
reforms tracks into hypotheses after each new scan
of data are received. It also uses a sliding window
approach which is similar to the N-scan pruning
method used in conventional MHT and illustrated
in Fig. 4. The unique feature of this method is the
manner in which a Lagrangian relaxation method is
used to find the most likely hypothesis or a set of the
m-best hypotheses [21].
The input is a set of tracks with their scores and

their compatibilities with other tracks. Again, two
tracks are defined to be incompatible, and thus cannot
be in the same hypothesis, if they share one or more
observations. The process of arranging these tracks

into hypotheses can be formulated as an optimization
problem with the goal of maximizing the hypothesis
score (sum of all track scores in hypothesis) with
the constraints that no tracks in the hypothesis share
observations.

The basic principle of the Langrangian relaxation
approach is to replace constraints (in this case that
an observation can be used by at most a single track)
by Lagrange multipliers in the objective function
(in this case the sum of track scores) used in the
maximization. The “art” of this method involves
the proper choice of Lagrange multipliers so that
the solution formed from maximizing the objective
function approaches the best feasible solution, in
which each observation is used by at most a single
track.

This optimization is very complex and requires
sophisticated mathematics but we will (at least attempt
to) summarize the basic principles. Two solutions to
the hypothesis formation problem are obtained with
cost defined to be the negative of score. The first
solution, defined to be the relaxed or dual solution,
may not satisfy the constraints (that an observation
should be used once and only once). However,
Lagrange multipliers are introduced into this solution
and are chosen so that constraint violations are,
effectively, given high costs. Thus, the number of
constraint violations should be reduced over time with
successive iterations of the method.

A second solution, denoted the recovered or
primal solution, is obtained from the dual solution by
enforcing the constraints. For example, one method
for obtaining this solution starts with the assignment
of the first two scans of data that was obtained by the
dual solution. Then, it adds observations from the later
scans by solving an assignment matrix, that enforces
the constraints, on each later scan. Thus, a feasible,
but likely suboptimal, solution is obtained.

The costs of the dual solution, q(u), where u
represents the Lagrangian multipliers, and the primal
solution, v(z̄), represent bounds on the cost, v(z), of
the true, but unknown, solution

q(u)� v(z) � v(z̄)
where z and z̄ are the set of binary variables that
define which tracks are included in the true and the
primal solutions, respectively [1, 15, 16].

Successive iterations are performed by using
updated Lagrange multipliers in an attempt to increase
q(u) and decrease v(z̄) and a stopping rule is defined
so that the feasible primary solution is accepted when
q(u) and v(z̄) are “close enough,” or when time runs
out and a solution is required.

The multiscan assignment method outlined
above can be used to implement the N-scan pruning
method used for track-oriented MHT, as illustrated
in Fig. 4. Performing N-scan pruning requires a
solution to the N +2 scan assignment problem.
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Fig. 6. Implementation of N = 3 scan pruning using 5D assignment. (a) First five scans of observations. (b) Tracks formed from first
two scans and four scans of observations. (Adapted from notes by A. B. Poore.)

Fig. 6 illustrates the process for N = 3 (five-scan
assignment). Referring to Fig. 6(a), initially five scans
of data are collected with the observations on scan 1
effectively being the initial root nodes. The output of
the 5D assignment problem will be a set of tracks in
the most likely (solution) hypothesis. These tracks are
traced back N = 3 scans to their root nodes (tracks) on
scan 2. Then, all tracks that were in existence on scan
2 and that do not have one of these root node tracks
as their ancestor on scan 2 are deleted.
As illustrated in Fig. 6(b), the root nodes are taken

to be the tracks on scan 2 that were the ancestors
of the tracks in the most likely hypothesis. The next
scan of data is used to update the tracks that survived
pruning on the previous scan. The process continues
with, in general, new observations received on scan
k+1, a sliding window of observations received on
scans k,k� 1, : : : ,k�N +1 and the root node tracks
on scan k�N . This process is illustrated in Fig. 6(b)
for k = 5 and N = 3. See [22, 23] for more details on
efficient implementation.

Bayesian MHT

The technique denoted Bayesian MHT [6, 17, 18]
is designed to more closely represent the probability
density functions (PDF) of alternative data association
hypotheses. The PDF is represented as a Gaussian
mixture that represents the joint distribution of the
targets under track. Thus, the method effectively
requires knowledge, or assumption, of the number of
targets in track. Reference [18] addresses the problem
of estimating this number.

IV. MHT AND MULTIPLE MODEL FILTERING

It is widely accepted that accurate tracking of
dynamic targets requires the use of multiple Kalman
filter models. The basic idea of all multiple model
approaches, as applied to tracking maneuvering
targets, is that maneuvers are typically abrupt
deviations from basically straight-line target motion.
Because this process is very difficult to represent

with a single maneuver model, multiple models,
representing different potential target maneuver
states, are run in parallel and continuously evaluated
using filter residual histories. Bayes’ rule and the
residuals are used to determine the probabilities of
validity of the models. The output is then typically
a probability-weighted composite of the individual
filters.

There are two basic approaches that can be used
to combine MHT with multiple model filtering. The
first, outlined in [12], is to add a set of maneuver
hypotheses to the MHT data association hypotheses.
Thus, an additional set of hypotheses which differ
in target dynamics history will be formed. Use of
interacting multiple model (IMM) filtering appears
to be difficult for this approach.

IMM filtering has become generally accepted
as the best method for using multiple filter models
[2]. The unique feature of the IMM approach is
the manner in which the state estimates and the
covariance matrices are combined via the process
defined to be mixing. The basic principle is that
the currently more accurate (as determined by the
computed model probabilities) models transfer their
state estimates to the less accurate models. For
example, in the case of a maneuvering target, the
state estimates from the maneuver models, that should
follow the target motion fairly well, are transferred to
the nonmaneuver filter that otherwise would develop a
large lag.

In order to conveniently do IMM filtering within
an MHT framework, we believe that it is most
convenient to define tracks according to their data
association history. A similar approach is presented
in [24]. Then, the track score (or probability) is
computed using all component IMM filter models.
Thus, hypothesis formation and pruning are done on
the composite tracks, containing contributions from
all IMM filter models, rather than on the IMM model
tracks independently. Using this approach the mixing
process is conveniently done for each track, rather
than requiring mixing across tracks.
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Fig. 7. Score function approach as an application of SPRT.

Given that hypothesis formation and pruning
are performed using all the IMM filter models for
each track, the next issue is how to perform gating
and how to update the combined track score. One
approach is to form a composite track state estimate
and covariance matrix before gating and to perform
gating using the composite quantities.
The composite state estimate and covariance

matrix are formed from weighted (by the filter
model probabilities) sums of the state estimates
and covariance matrices of the individual filters.
Alternatively, using a second approach, each
filter model can be used separately for gating. In
this case, there will be separate state estimates
(and corresponding covariance matrices) that
will be individually compared with the candidate
observations. The observation-to-track gating test
will then be satisfied if the gating test is satisfied
for any filter model. Similarly, the track score can
be computed from the composite track residual (and
residual statistics) or a combined track score can be
computed using the individual residual data from the
different IMM filter models.
It has been our experience that the second

approach is preferred. During times of nonmaneuver,
the composite state and covariance matrix (and
resulting gate) may become so heavily weighted
towards the nonmaneuver models that an abrupt target
maneuver can lead to track loss. Finally, the extension
to the track score required when multiple filter models
are used is straight forward [1].

V. MHT APPLICATIONS

The actual practical implementation of MHT
has been impeded by the, currently incorrect [19],
perception that its complexity precludes real-time
application. Also, the security restrictions that
surround technologies, such as tracking, being
developed for current military applications and
company proprietary policies have greatly restricted
the ability of MHT tracker developers to publish and

compare their results, and to share ideas. Another
problem is that very little comparative study of
MHT performance, versus that of alternative tracking
methods, has been reported in the tracking literature.
However, the brief summary of reported comparative
studies, such as [25], given in [1] and the growing
acceptance of MHT among those in the tracking
community clearly indicate that MHT is the currently
preferred method for difficult tracking problems. We
next summarize some important applications with
which the author is familiar.

Track Confirmation and Maintenance for Dim Targets in
Clutter

As illustrated by Fig. 7, and discussed further
in [1, 18, 26], a confirmation test that uses the
track score (LLR) is essentially an application
of the classical sequential probability ratio test
(SPRT). Then, as detailed in [1], the choice of
confirmation and deletion thresholds (T1 and
T2, respectively, shown in Fig. 7) can be related
to tracking requirements (such as the number
of false tracks allowed per hour) through the
parameters ®= false track confirmation, and ¯ =
true track deletion probability. This approach also
provides a convenient analysis tool for preliminary
system design [1, 26].

The application of SPRT theory to MHT
track confirmation assumes that false alarms are
uncorrelated in time. In practice, such as for tracking
targets against a background of ground clutter, clutter
returns tend to be correlated in time. In this case, it
is best to maintain tracks on the stationary sources
of ground clutter that produce the returns. Thus,
special logic using motion or signal characteristics
is developed to inhibit the output of these tracks to the
user [27].

A number of studies, discussed further in [1],
have indicated that an MHT tracker will provide
performance that is comparable to the conventional,
single hypothesis (GNN) method at 10 to 100 times
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the false alarm density of the GNN method. This
allows a system using MHT to operate at a lower
detection threshold, in order to detect and track dim
targets [28]. However, the comparative study given in
[29] showed that a well-designed track-before-detect
(TBD) approach that, in effect, combines the detection
and tracking functions, will confirm tracks on
nonmaneuvering dim targets at much lower SNR
(about 4–5 dB lower for the cases considered in [29]).

Agile Beam Radar

Efficient allocation of radar resources is one
of the major issues in the design of an agile beam
(or electronically scanned) radar tracking system.
Moreover, following [1, 30–32] use of an MHT
tracker can greatly enhance the effectiveness of
an allocation scheme. Specifically, the combined
use of MHT data association and IMM filtering
and prediction methods provides the most accurate
estimates of tracking error that are required for
efficient sensor allocation. The IMM filter model
probabilities and covariance matrices provide
estimates of the error due to target maneuver and the
potential error due to data association is computed
from alternative MHT hypotheses. Further discussions
of the radar benchmark study that demonstrated the
effectiveness of an IMM/MHT solution to the agile
beam radar resource allocation problem are given in
[30] and the Introduction of [33].

Missile Defense Systems

Post boost tracking scenarios for missile defense
systems are characterized by a large number
(potentially hundreds or even thousands) of closely
spaced objects. These objects are deployed over
time by the post boost vehicle (PBV or bus) and
very accurate tracks are required for impact point
prediction. In addition, track purity (defined to be
the proportion of observations in a track that were
produced by the same source) must be high so
that discrimination can be successfully performed.
Discrimination methods employ Bayesian or
Dempster-Shafer reasoning to determine the target
type using the characteristics (such as intensity
profile) of the measurements in the track as examined
over time. For example, it is very important to
discriminate between the lethal reentry vehicle (RV)
and decoys that are employed to “trick” the tracking
and discrimination algorithms.
Both radar and space-based infrared (SBIR)

tracking systems are being developed. Given the
stringent tracking requirements, it is generally
accepted that MHT should be used for both types of
sensors and there are several special features, outlined
next, that must be addressed for these applications.

Fig. 8. Triangulation with angle tracks leads to false intersections
that can be resolved with MHT and later data.

First, objects (RVs and various types of decoys) are
deployed from the PBV with basically the same
velocity as the PBV. Thus, a “warm start” track
initiation (or spawning) procedure is used in order to
quickly obtain the required tracking accuracy.

Referring to Fig. 2, observations O2 and O3
would be candidates for “warm start” new track
initiation (in addition to the hypotheses that they
update T2 or possibly T1 also). Thus, the new tracks
would be given a position estimate based upon the
measurement and a velocity estimate based upon
the velocity of the parent tracks (either T1 or T2
or an average of the two) for which they satisfied a
gating relationship. For the SBIR system, in which
only angle measurements are available, the range
from the sensor platform, as well as the platform
position, will be used along with the measured
angles to form the initial position estimate. The
initial “warm start” track filter covariance matrices
are defined using the measurement error variances
and the parent track range (for SBIR) and velocity
error covariance matrices. Also, terms to account
for the potential differences in velocity of the newly
detected (resolved) object and the parent track object
are added. Finally, once spawning occurs, MHT
processing will take over to determine, using later
data, which observations (in our example O2 or O3)
should start new tracks and which should update
existing tracks (or possibly be discarded).

An additional source of data association
uncertainty occurs for the angle-only measurements of
an SBIR system. Tracks on targets that are separated
from existing tracks (so that spawning cannot be
accurately used) must be initiated by the triangulation
process, illustrated in Fig. 8 and discussed further in
[1]. Using this procedure, the intersections (or near
intersections) of mono (angle-only) tracks from two
platforms (S1, S2) are used to initiate stereo (3D
position and velocity) tracks. The problem, shown in
Fig. 8, is that, for closely spaced targets, there may
be false intersections that form ghost tracks, as well
as the correct intersection where the targets actually
exist. Thus, an MHT approach is required so that all
feasible tracks are maintained until either the evolving
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TABLE I
Comparative Conventional and MHT Tracking Errors Referenced to an Idealized System

Early Time Intermediate Late

System Position Velocity Position Velocity Position Velocity

Conventional 3.3 2.9 2.8 5.0 3.0 3.3
MHT 1.7 2.1 1.4 2.0 1.5 1.2

Idealized 1.0 1.0 1.0 1.0 1.0 1.0

geometry or data from additional sensors (S3) allows
the system to sort out the ghosts from the true target
tracks.
In order to illustrate the advantages of MHT over

conventional single hypothesis (GNN) tracking, Table
I gives recent comparative results for a difficult SBIR
application. Table I gives comparative 97 percent
Monte Carlo simulation derived position and velocity
errors for three tracking systems. The 97 percent level
values were defined such that only 3 percent of the
tracking error (averaged over multiple targets and
multiple Monte Carlo runs) exceeded these values
at the sampling times. A highly optimistic reference
for Table I was an idealized system for which perfect
observation-to-track association was performed.
The observations were assigned target truth tags,
which were used for the association, but the effects
of unresolved targets and missed detections were
included.
The MHT and conventional (GNN) tracking

system RMS position and velocity tracking errors are
normalized with respect to the idealized system errors.
Results are presented at three times. The initial (early)
time is when targets are beginning to become resolved
so that by the last (late) time nearly all targets were
resolved. Of course, the tracking errors decreased
for all systems (even though some ratios increased)
with time but the comparative advantage of the MHT
system is clearly apparent over the entire scenario.
Finally, note that the MHT errors closely approach
those of the idealized system towards the end of
the scenario while the conventional tracker errors
remain at about 3 times the values for the idealized
system.

Ground Target Tracking

Probably the most important, and challenging,
current tracking application uses data from airborne
(or spaced-based) sensors to track ground targets.
Difficult target dynamics include move-stop-move
and on and off-road target motion as well as closely
spaced targets moving in groups (convoys). Sensor
difficulties result from potentially long revisit times
(greater than 10 sec.), obscured (by mountains or
building) sensor line-of-sight, unresolved targets, out
of sequence measurements in multiple sensor systems,
and the fact that a radar operating in the standard
ground moving target detection (GMTI) mode will not

detect stopped (or slow moving) targets that cannot be
distinguished from the ground clutter.

The difficulty of tracking ground targets has led
to the consensus that multiple filter models, for on
and off-road tracking, and MHT data association are
required. For example, see [34–38] and Chapt. 6 of
[33].

An example of the interesting challenges of the
ground target tracking problem are targets that use
move-stop-move motion in order to evade detection
by GMTI radar. This necessitates the development of
a special stopping target filter model and the inclusion
of the hypothesis that a missing detection results from
a stopped target, rather than a random miss or an
incorrect track prediction [36–38]. In particular, the
lack of detection can actually be used to infer target
position by forming the hypothesis that a missed
detection results from the fact that the target has
stopped [37].

VI. MHT RESEARCH AND DEVELOPMENT AREAS

As stated by Daum several years ago [39], a major,
mostly ignored, tracking problem is the presence
of unresolved, or partially resolved, measurements
produced by closely spaced targets. In closely-spaced
target scenarios, such as aircraft flying in formation,
an observation will often be produced by two, or
more, targets. Thus, for these conditions, the standard
MHT assumption that an observation was produced
by a single target, and thus can only be assigned to
a single track, must be modified. This issue becomes
particularly important when tracking with sensors of
different resolution capability, such as radar and IR.
References [1, 40–42] and [33, ch. 4] present methods
that are applicable to the extension of MHT to include
hypotheses that allow a potentially merged observation
to update more than one track.

Another important area of research is the
combination of MHT with group tracking. An
example where combined group and MHT tracking
will be required is the missile defense problem where
large numbers of objects may be deployed from
the PBV (bus) in a short time period [43, 44]. As
discussed in [44], there may be time intervals, as
the targets are first deployed, when the proliferation
of closely spaced targets may cause the number of
MHT hypotheses formed to become prohibitive. The
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proposed solution [44] uses group tracking until the
targets separate sufficiently to allow feasible MHT
tracking of individual targets. The determination
of when (and how) to make the transition from a
group track to MHT tracking of individual targets is
the major issue. Other applications where combined
MHT and group tracking will be required for optimal
performance include tracking formations of aircraft
[18] and convoys of ground moving targets [45].
As shown in [28], the track-before-detect (TBD)

approach may significantly outperform MHT for the
task of track confirmation of dim nonmaneuvering
targets. However, the TBD approach, which essentially
integrates signal intensity along a set of potential,
nearly straight line paths, is not applicable to highly
maneuvering targets and has questionable applicability
in dense target environments. Thus, the goal is to
combine use of the powerful TBD methods, such as
the dynamic programming algorithm, DPA [1, 46] and
Bayesian tracking [28, 47], for detecting and tracking
widely-spaced dim targets with IMM/MHT techniques
that are most applicable to maneuvering targets in
dense environments. Reference [46] discusses a
combined DPA/MHT tracking system.
Standard track and hypothesis evaluation methods

currently only use metric (measured position, range
rate, etc.) and possibly intensity (measured SNR, etc.)
data. The increased capability of sensors to measure
other feature data, such as high range resolution
(HRR) and jet engine modulation (JEM) radar
measurements, and the development of multiple sensor
tracking systems dictate that features, attributes and
target classification/ID should be used to improve data
association. This is particularly true for the problem
of maintaining tracks on high priority targets for the
ground target tracking problem [48].
A basic issue is how to weight attribute/ID data

versus metric measurements. For example, a radar
return might contain JEM information regarding
engine type that is consistent with other target
type information contained in the track, but the
measured range rate may differ significantly from
the track’s predicted range rate. How should the
observation-to-track score reflect these two different,
and possibly inconsistent, data sources? As outlined in
[1, 49] a mapping to likelihood (or LLR) is required.
However, to the author’s knowledge this approach has
not yet been implemented for a practical system.
As discussed further in [33, ch. 1], the multisensor

distributed tracking problem is of great practical
importance. One basic issue/goal for a distributed
platform system is to attempt to ensure that all
platforms have a Single Integrated Air Picture (SIAP)
so that, for example, track 1 on platform 1 represents
the same target as track 1 on platform 2, etc. Methods
for maintaining SIAP for conventional (single
hypothesis) tracking use an associated measurement
report (AMR) that is sent from the platform that

receives a measurement. The AMR contains the
association decision, made by the platform that
produced the measurement, which is broadcast to all
other platforms in the network who update their tracks
accordingly, without any further association logic
being performed.

Maintaining SIAP for an MHT system is much
more difficult because multiple current association
hypotheses are maintained so that, as shown in
Fig. 4, final irrevocable decisions are delayed. In the
meanwhile, as the result of imperfect communication
(missing and out-of-sequence data), the family
structures on the different platforms may diverge.
Also, track initiation and confirmation decisions may
differ as different platforms use different sequences of
measurements to initiate duplicate tracks on the same
target. This is an important area of current research
with approaches discussed in [50–52] and [33, ch. 6].
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I. INTRODUCTION

Moving target indication (MTI) is a common radar
mission involving the detection of airborne or surface
moving targets. The signal-to-noise ratio (SNR)—a
characterization of the noise-limited performance
of the radar against a target with radar cross section
(RCS) ¾T at range r—is approximated as

SNR(Á,μ) =
�
PtGt(Á,μ)
4¼r2

�� ¾T
4¼r2

�� AeGsp
NinFnLrf

�

(1)

where Pt is peak transmit power, Gt(Á,μ) is antenna
gain for direction (Á,μ), Ae is the effective receive
aperture area, Gsp represents processing gains, Nin
is the input noise power, Fn is the receiver noise
figure and Lrf represents radio frequency (RF) system
losses [1]. Assuming the noise is uncorrelated (white)
and Gaussian, the probability of detection (PD) is a
one-to-one, monotonic function of both SNR and the
probability of false alarm (PFA). By maximizing SNR,
the processor maximizes the probability of detection
for a fixed probability of false alarm. In light of (1),
the radar designer ensures detection of targets with
diminishing radar cross section at farther range by
increasing power-aperture PtAe. System constraints and
cost limit the deployable power-aperture product.

Radar mounted on aerospace platforms
must also mitigate the otherwise deleterious
impact of ground clutter returns and jamming on
moving target detection. We collectively refer to
clutter and jamming as interference. Assuming
Gaussian-distributed interference, PD depends on both
signal-to-interference-plus-noise ratio (SINR) and the
specified value of PFA in a manner analogous to the
white noise detection scenario. Since SINR� SNR,
interference always degrades detection performance
in comparison with the noise-limited case. Fig. 1

Fig. 1. Receiver operating characteristics for non-fluctuating and
fluctuating targets.

shows the receiver operating characteristic (ROC) for
non-fluctuating and Swerling 1 targets; the abscissa
corresponds to output SINR. This figure clarifies the
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Fig. 2. Multi-channel ESA configured as a uniform linear array.

monotonic relationship between SINR, PD and PFA; for
a fixed-value of PFA, maximizing SINR is tantamount
to maximizing PD.
Spatial and temporal signal diversity, or degrees

of freedom (DoF), greatly enhances radar detection
in the presence of certain types of interference.
Specifically, the appropriate application of space-time
DoFs efficiently maximizes SINR when the target
competes with ground clutter and barrage noise
jamming. Ground clutter returns exhibit correlation in
both spatial and temporal dimensions, while jamming
is predominantly correlated in angle for modest
bandwidth. Space-time adaptive processing (STAP)
involves adaptively (or dynamically) adjusting the
two-dimensional space-time filter response in an
attempt at maximizing output SINR, and consequently,
improving radar detection performance.
The objective of this paper is to develop the basic

theory of space-time adaptive processing (STAP) as it
relates to aerospace radar detection of moving targets
in clutter-limited environments, and also consider
some current trends in STAP research. Following
groundbreaking adaptive array development by
Howells [2], Applebaum [3] and Widrow et al. [4],
Brennan and Reed introduced STAP to the airborne
radar community in a seminal 1973 paper [5]. In
years since the Brennan and Reed paper, STAP
has been vigorously researched [6–67]. The recent
advancement of high speed, high performance, digital
signal processors makes fielding STAP-based radar
systems possible on manned and unmanned airborne
platforms and spaceborne satellites.
We organize this paper as follows. In Section

II we describe the space-time properties of ground
clutter and noise jamming. Section III formulates the
STAP weight vector by considering the maximum
SINR filter, while Section IV describes important
STAP performance metrics. We then consider
reduced-dimension (RD) and reduced-rank (RR)
STAP formulations in Section V; RD/RR-STAP
represent practical approaches for improving the
statistical convergence of the adaptive filter, while
RD-STAP also has the added advantage of reducing
computational burden. Section VI concludes the
paper by highlighting current trends in STAP

research, including STAP application to space-based
radar, bistatic radar, non-sidelooking arrays, and
multi-channel synthetic aperture radar (SAR). We also
overview knowledge-aided STAP in this final section.

II. PROPERTIES OF GROUND CLUTTER AND NOISE
JAMMING

In this section we discuss the space-time
characteristics of ground clutter and noise jamming.
Toward this end, we first briefly describe spatial and
temporal sampling and then consider two-dimensional
space-time signals.

STAP systems generally employ an electronically
scanned antenna (ESA) divided into multiple receive
channels. A collection of antenna elements, known
as a sub-array; the RF manifold, including RF
summer; a receiver; and, an analog-to-digital converter
(A/D) constitute the spatial channel. Fig. 2 depicts
a multi-channel ESA configured as a uniform linear
array (ULA). The multi-channel array spatially
samples a propagating plane wave by effectively
measuring the (nominally linear) phase difference
among channels. Different phase variation corresponds
to different signal direction of arrival.

Given an appropriate reference point, the
respective phase at the mth spatial channel due to a
propagating plane wave with a specific direction of
arrival is

°s=m = time delay� radian frequency = ¿m! (2)

where ¿m is the time-delay between reception of the
plane wave at the reference point and the mth channel
and ! is radian frequency. We calculate ¿m from the
geometry given in Fig. 3 as follows:

¿m =
k(Á,μ) �dm

c

dm = dx=mx̂+dy=mŷ+ dz=mẑ

k(Á,μ) = cos μ sin Áx̂+cos μ cos Áŷ+sin μẑ

(3)

where dm is the position vector corresponding to
the phase center of the mth channel, k(Á,μ) is a unit
vector pointing normal to the plane wave, Á and
μ represent azimuth and elevation angles, c is the
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Fig. 3. Array geometry.

velocity of the propagating wave, �dx=m,dy=m,dz=m�
are the Cartesian coordinates of the mth channel
phase center, and �x̂, ŷ, ẑ� are unit vectors along the
Cartesian axes. Considering a sidelooking ULA, and
substituting (3) into (2), gives

°s=m =
!

c
dx=m cos μ sin Á=

2¼
¸
dx=m cos Ácone: (4)

In this case we use the relationships ! = 2¼f and
¸= c=f, where ¸ is wavelength and f is frequency in
hertz. Also, cos Ácone is the direction cosine between
the x-axis and the unit vector k(Á,μ); Ácone is known
as the cone angle and defines a conical ambiguity
surface for the ULA’s angle measurement.
Let d equal the uniform sub-array spacing of

an M channel ULA. Also, place the first channel at
the origin and designate it the phase reference. The
received spatial signal vector is xs = asss(fsp), where as
is a random, complex voltage and

ss(fsp) = [1 exp(j2¼ �fsp) exp(j2¼ � 2fsp)
� � � exp(j2¼ � (M � 1)fsp)]T (5)

is the spatial steering vector. The variable fsp is known
as spatial frequency and is given by

fsp =
d

¸o
cos Ácone: (6)

We assume a narrow signal bandwidth, thus replacing
¸ by its center value ¸o, and an error-free array
manifold.
A length N periodic pulse train, with pulse

repetition interval (PRI) T, comprises the transmit
waveform. The radar system uses the pulse train to
temporally sample the signal environment. Consider a
point scatterer initially at range ro from the antenna
phase center reference point. Assume motion of
either the scatterer, radar platform, or both radar and
scatterer, leading to a pulse-to-pulse change in range
of ¢r. The fast-time (range) delay due to motion for
receive pulse n is

¿n = time delay =
distance

c
=
2ro+ n2¢r

c
: (7)

The pulse-to-pulse phase is given by

Án = time delay� radian frequency = ¿n!

= 4¼
�
ro+ n¢r

¸

	
: (8)

Since radian frequency is the time derivative of phase,
the corresponding Doppler frequency is

1
2¼
dÁn
dt

= fd =
2¢r
¸¢t

=
2vr
¸
: (9)

¢t represents change in the time variable and vr
denotes the radial velocity component, or line-of-sight
velocity.

The resulting temporal signal vector corresponding
to a point scatterer with normalized Doppler f̃d = fdT
is xt = atst(f̃d), where at is a random complex voltage
and

st(f̃d) = [1 exp(j2¼ � f̃d) exp(j2¼ � 2f̃d)
� � � exp(j2¼ � (N � 1)f̃d)]T (10)

is known as the temporal steering vector. Comparing
(10) and (5), we find a mathematical similarity
between spatial and temporal responses. For this
reason, the collection of N receive pulses is sometimes
called the temporal aperture.

The space-time signal vector corresponding to the
return from a point scatterer with spatial frequency
fsp and normalized Doppler frequency f̃d is xs�t =
as�tss�t(fsp, f̃d), where as�t is a random, complex

voltage and ss�t(fsp, f̃d) is the space-time steering
vector. The space-time steering vector is written as the
Kronecker product of the temporal and spatial steering
vectors:

ss�t(fsp, f̃d) = st(f̃d)	 ss(fsp)

= [1 � sTs (fsp) ej2¼�f̃d � sTs (fsp) ej2¼�2f̃d � sTs (fsp)

� � � ej2¼�(N�1)f̃d � sTs (fsp)]T: (11)

Fig. 4 shows the two-dimensional power spectral
density (PSD) of two unity amplitude space-time
signals, one at an angle of 20 deg and Doppler
frequency of 200 Hz, the second at �30 deg and
Doppler of �100 Hz. Each signal appears as a
two-dimensional sinc function.

MTI signal processing operates on the radar data
cube, shown in Fig. 5. While the radar processor does
not store data in the form shown in Fig. 5, the data
cube is a convenient means of visualizing subsequent
space-time processing. Each data cube corresponds
to a single coherent processing interval (CPI).
Pre-processing steps convert the RF signals at the
multiple receiver (Rx) channels to complex baseband
space-time and range samples; the A/D clock rate
is at least as high as the waveform bandwidth for
complex sampling. It is common to refer to the range
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Fig. 4. Angle-Doppler PSD of two space-time signals.

dimension as fast-time and the pulse dimension
as slow-time; the processor collects the fast-time
samples at the A/D rate. Each row of the data cube
corresponds to a spatial sample and each column to
a slow-time sample, while the L unambiguous range
samples extend in the third dimension. The page
of the data cube corresponding to the kth range
cell is

Xk =



�����
[Xk]1,1 [Xk]1,2 � � � [Xk]1,N
[Xk]2,1 [Xk]2,2 � � � [Xk]2,N
...

... � � � ...

[Xk]M ,1 [Xk]M ,2 � � � [Xk]M ,N


����� : (12)

In this format, it is possible for the processor to
spatially beamform across the rows and Doppler
process across columns. Vectorizing (12) by stacking
each succeeding column one beneath the other yields
the space-time snapshot for the kth range, i.e. xk =
xs�t=k =Xk(:).
The ground clutter return corresponding to the

kth range results from the coherent summation of the
many scattering centers within the bounds of each

Fig. 5. Radar data cube.

iso-range, including range ambiguities. A simple, yet
effective model for the clutter space-time snapshot
takes the form

ck =
Na�
m=1

Nc�
n=1

as�t(m,n;k)
 ss�t(fsp=m,n, f̃d=m,n;k)

(13)

where we assume each iso-range consists of Nc
statistically independent clutter patches, Na indicates
the number of ambiguous ranges, fsp=m,n and f̃d=m,n
represent the spatial and normalized Doppler
frequencies of the m� nth patch, and as�t(m,n;k)
is the length-NM vector containing the space-time
voltages for each channel-pulse-range sample and
is proportional to the square-root of the clutter patch
RCS. Also, 
 represents the Hadamard (element-wise)
product. Given the platform velocity vector, vp =
vp,xx̂+ vp,y ŷ+ vp,z ẑ, the normalized clutter patch
Doppler is

f̃d=m,n =
2vr=m,nT

¸
=
2T
¸
(vp �k(Ám,n,μm,n)): (14)

Similarly, vr=m,n is the corresponding radial velocity
for the m� nth clutter patch. From (14) we see that
ground clutter Doppler has a distinct dependence on
angle. Fig. 6 pictorially characterizes the calculation in
(13).

The Multi-Channel Airborne Radar Measurements
(MCARM) Program collected data to examine the
performance potential of STAP [15]. To justify
the basic form of (13), we compare the minimum
variance distortionless response (MVDR) spectra
[11, 16] for measured and simulated data in Fig. 7.
From this figure we find acceptable correspondence
between the overall characteristics of the measured
and synthetic data; some of the angular spreading
of the measured clutter interference is likely due to
radome multipath reflections and near-field scattering
effects not included in the simulation model.

Narrowband noise jamming signals are the
result of the intentional introduction of a noise-like
waveform into the receive aperture. A commonly
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Fig. 6. Geometry for space-time clutter patch calculation.

Fig. 7. Comparison of MVDR spectra for measured MCARM data (left) and simulation (right).

employed model for such Nj jamming signals is

jk =
Nj�
m=1

zm	 ss(fsp=m) (15)

where zm contains voltage samples of the mth jammer
waveform taken at the PRI. The different jammer
waveforms are uncorrelated with each other, with each
waveform being uncorrelated over the PRI:

E[[zm]n � [zm]�m] = ¾2J=m±((n�m)T) (16)

with “�” indicating conjugation. ¾2J=m is the
single-channel power of the mth jammer. The simple
model of (16) neglects jammer correlation in fast-time.
The complete interference space-time snapshot is

xk = ck+ jk+ nk: (17)

nk represents the uncorrelated component due to
thermal receiver noise or sky noise; the corresponding
single-channel noise power is ¾2n . Equation (17)
presumes the additive nature of clutter, jamming and
noise signals. Fig. 8 provides an example of the PSD
for ground clutter, jamming and noise signals; the
radar array is sidelooking and configured as a ULA.
A single jammer signal is present at �39�.

III. SPACE-TIME ADAPTIVE FILTER FORMULATION

The space-time processor linearly combines the
elements of the data snapshot, yielding the scalar
output

yk =
NM�
m=1

[wk]
�
m[xk]m =w

H
k xk (18)

IEEE A&E SYSTEMS MAGAZINE VOL. 19, NO. 1 JANUARY 2004 PART 2: TUTORIALS—MELVIN 23



Fig. 8. Simulated PSD for clutter, jamming and noise signals.

where the superscript “H” denotes conjugate
transposition and wk is the NM-length weight vector.
The finite impulse response (FIR) filter of Fig. 9
corresponds to the complex inner product operation
of (18); the digital memory, z�1, correspond to time
delays at the PRI. A threshold is set to discriminate
between one of two hypotheses,

H0 : xk = ck+ jk+nk

H1 : xk = s+ ck+ jk+ nk
(19)

while maintaining a specified PFA. s is the target
space-time snapshot. The condition H0 is the
null-hypothesis, or case of target absence, while H1
is the alternative hypothesis indicating target
presence.

Fig. 9. Space-time filtering operation and thresholding.

Maximizing the output SINR is a key objective of
the space-time processor. From (18)–(19), the output
SINR is the ratio of signal-to-interference-plus-noise
power at the filter output:

SINR=
E[wHk ss

Hwk]
E[wHk xk=H0x

H
k=H0

wk]
=
¾2s wHk ss�t(fsp, f̃d)2

wHk Rkwk
:

(20)
E[�] denotes the expectation operator and Rk =
E[xk=H0x

H
k=H0

] is the interference covariance matrix.
We further assume the target snapshot takes the form
s= ®s�tss�t(fsp, f̃d); ®s�t is a complex RMS voltage
and ¾2s = E[®s�t2] is the single-channel, single-pulse
signal power. As pointed out in Section I, maximizing
SINR equivalently maximizes PD for a fixed PFA in the
multivariate Gaussian case.

The optimal weight vector maximizes the output
SINR and takes the form wk = ¯R

�1
k ss�t(fsp, f̃d), for

arbitrary scalar ¯ [5, 17]. To see this, express (20) as

SINR= ¾2s
³wHk ³s2
³wHk ³wk

� ¾2s
³wHk ³wk³s

H³s
³wHk ³wk

(21)

where wk =R
�1=2
k

³wk and ss�t(fsp, f̃d) =R
1=2
k
³s. For

the covariance matrices of interest, Rk =R
1=2
k R1=2k .

By choosing ³wk =³s, (21) achieves the upper bound.
Substituting the prior expressions gives

³wk =R
1=2
k wk =³s=R

�1=2
k ss�t(fsp, f̃d)

� wk =R
�1
k ss�t(fsp, f̃d): (22)
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Scaling the weight vector by ¯ does not alter the
output SINR.
STAP is a data domain implementation of the

optimal filter with weight vector given by (22). In
practice, both Rk and ss�t(fsp, f̃d) are unknown. The
processor substitutes an estimate for each quantity to
arrive at the adaptive weight vector

ŵk =
ˆ̄R̂�1k vs�t (23)

where ˆ̄ is a scalar, vs�t is a surrogate for ss�t(fsp, f̃d)
and R̂k is an estimate of Rk. This approach is known
as sample matrix inversion (SMI). Alternate adaptive
weight calculation methods are given in [5, 12, 13, 16],
for example.
It is most common to compute the covariance

matrix estimate as [17]

R̂k =
1
P

P�
m=1

xmx
H
m: (24)

�xm�Pm=1 are known as secondary or training data.
If all training data are independent and identically
distributed (iid) with respect to the null-hypothesis
condition of the test cell, choosing P � 2NM yields
an average performance loss of roughly 3 dB [17].
To avoid target self-whitening, the processor excludes
the cell under test, as well as several adjacent cells
(known as “guard cells”), from the training data set.
The performance loss results from the difference
between actual and estimated covariance matrices.
The processor tests for targets at a series

of discrete points over the spatial and Doppler
frequencies of interest. Given knowledge of the
sub-array locations and the PRI, the processor
generates the hypothesized space-time steering vector
vs�t via a calculation identical in form to (11). Error
between ss�t(fsp, f̃d) and vs�t, known as steering
vector mismatch, also leads to some performance loss.
Leading causes of steering vector mismatch include
array errors and straddling (straddle loss occurs since
the processor commonly tests for ss�t(fsp, f̃d) by
choosing various guesses vs�t equally spaced over
a range of spatial and Doppler frequencies). Further
discussion on the impact of steering vector mismatch
is given in [18].
Certain choices of ¯ or ˆ̄ can prove advantageous.

For example, forming the square-law output and
setting

ˆ̄ =
1�

vHs�tR̂
�1
k vs�t

(25)

yields the test statistic

´ = ŵHk xk2 =
vHs�tR̂�1k xk2
vHs�tR̂

�1
k vs�t

: (26)

Equation (26), known as the adaptive matched filter
(AMF) test statistic, exhibits constant false alarm

rate (CFAR) properties [19, 20]. Comparing ´ to a
fixed threshold v�T, and recognizing v

H
s�tR̂

�1
k vs�t as an

estimate of the output noise power, provides further
insight:

´
H1
><
H0

v�T� vHs�tR̂�1k xk2
H1
><
H0

v�T � vHs�tR̂�1k vs�t: (27)

Hence, we can view (27) as a comparison of the
filter output power to a fixed threshold times a
multiplier corresponding to an estimate of the noise
power. Alternately, in light of (26), the normalization
serves to modulate the filter output by the inverse
of the noise power estimate so that a fixed threshold
provides CFAR performance.

In addition to the AMF, other extensions of the
SMI beamformer yielding CFAR behavior include the
generalized likelihood ratio test (GLRT) of [21] and
the adaptive coherence estimator (ACE) given in [22].

IV. PERFORMANCE METRICS

An optimum detection statistic for (18) under the
Gaussian assumption xk=H0 � CN(0,Rk), follows from
the likelihood ratio test and appears as [1, 23, 24]

yk
H1
><
H0

vT: (28)

where vT is the detection threshold.
The performance of (28) is given by

PFA = exp
��¯2T

2

�

PD =
� �

¯T

uexp
��(u2 +®2)

2

�
I0(®u)du

(29)

where PFA is the probability of false alarm, PD is the

probability of detection, ¯T = vT=
�
wHk Rkwk is a

normalized detection threshold, I0(�) is the modified
zero-order Bessel function of the first kind, and ®
equals the square-root of the peak output SINR. In
light of (20), and accounting for average signal power,
we find

®2 = 2�SINR= 2� ¾
2
s wHk ss�t(fsp, f̃d)2

wHk Rkwk
: (30)

Equation (29) is a monotonic function of ®, and hence
®2. Thus, maximizing SINR likewise maximizes PD
for a fixed value of PFA, a point clarified by Fig. 1 and
thoroughly discussed in [5].

Due to the critical importance of SINR, STAP
researchers commonly employ SINR loss factors to
assess detection performance potential [6, 7]. Two
commonly used SINR loss factors are Ls,1(fsp, f̃d)
and Ls,2(fsp, f̃d), where each loss term is bound
between zero and unity. Ls,1(fsp, f̃d) compares
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interference-limited performance to noise-limited
capability, assuming all quantities are known:

Ls,1(fsp, f̃d) =
SINRwk
SNR

=
�
wHk Rswk
wHk Rkwk

���
¾2s
¾2n
NM

�

(31)

where Rs = E[ss
H] is the signal correlation matrix.

Substituting the optimal weight vector, wk=opt =
¯R�1k ss�t(fsp, f̃d), specifies the upper bound on
performance in the maximum SINR sense. Since the
optimal weight vector calculation requires the known
covariance matrix, Ls,1(fsp, f̃d) is sometimes called the
clairvoyant SINR loss.
Ls,2(fsp, f̃d) determines the loss between an

implementation requiring estimated statistics and the
clairvoyant case (e.g., adaptive versus optimum):

Ls,2(fsp, f̃d) =
SINRwk=ŵk
SINRwk=wk=opt

=
�
ŵHk Rsŵk
ŵHk Rkŵk

���
wHk=optRswk=opt
wHk=optRkwk=opt

�
:

(32)

If the training data are iid and there is no steering
vector mismatch (i.e., vs�t

¢
=ss�t(fsp, f̃d)), Reed, Mallett

and Brennan showed Ls,2(fsp, f̃d) is beta-distributed
with mean [17]

E[Ls,2(fsp, f̃d)] =
(P+2�NM)
(P+1)

: (33)

P is the number of training data vectors. Equation
(33) suggests a nominal training requirement of
P � 2NM training data vectors to achieve an average
loss of 3 dB between adaptive and optimal filters; this
result is known as the RMB Rule after its originators.
Interestingly, convergence depends only on the
number of samples, not the particular characteristics
of the interference environment. Additional discussion
on SMI detection loss is given in [25].
Given the loss factor terms, SINR can be written

SINR(fsp, f̃d) = SNR(fsp)�Ls,1(fsp, f̃d)�Ls,2(fsp, f̃d)
(34)

where SNR(fsp) is the angle-dependent signal-to-noise
ratio. Those target velocities closest to the dominant
clutter component, and exhibiting SINR loss above
some acceptable value, viz. Ls,1(fsp, f̃d) �Ls,2(fsp, f̃d)�
", determine the minimum detectable velocity (MDV).
For example, suppose we calculate SNR to be 13 dB,
thereby yielding PD = 0:87 for PFA = 1E� 6 according
to (29) and Fig. 1 for a non-fluctuating target. If our
minimum detection requirement is PD = 0:5 for this
same false alarm rate, then SINR must be greater

than or equal to 11.25 dB. This indicates a tolerable
combined SINR loss of 1.75 dB, or "= 0:668.

Improvement factor (IF) is another common
metric, given as the ratio of output SINR to the input
SINR measured at a given space-time element:

IF =
SINRout
SINRelement

=
wHk ss�t(fsp, f̃d)2(¾2c +¾2n)

wHk Rkwk
(35)

where ¾2c is the total clutter power received by a single
sub-array on a single pulse [6]. In the noise-limited
case, (35) defaults to the space-time integration gain
(nominally, NM). IF closely relates to the preceding
SINR loss definitions.

V. REDUCED-DIMENSION/REDUCED-RANK STAP
FORMULATIONS

In the previous sections we described STAP as
a two-dimensional, adaptive, linear filter operating
on M spatial channels and N pulses. This direct
formulation is known as the joint-domain STAP.
Critical joint-domain STAP limitations include
minimal training sample support and substantial
computational burden. For example, given N = 128
and M = 22 as in the MCARM data collection [15],
the nominal training support of 2NM = 5632 far
exceeds the roughly 630 range bins comprising
the unambiguous range interval. Additionally,
computational burden associated with the SMI
approach is O(N3M3). Certainly reducing either N
or M is possible, but either option adversely affects
performance by degrading the available space-time
aperture. The purpose of this section is to bring to the
reader’s attention several alternate STAP formulations,
based on reducing the processor’s dimensionality
and/or applying a low-rank interference covariance
matrix approximation, to circumvent joint-domain
STAP limitations.

Observe that a two-dimensional (angle-Doppler)
frequency domain implementation of STAP is
possible; barring apodization loss, the frequency
domain approach yields detection performance
identical to its space-time counterpart. Adaptively
combining a sub-set of the frequency domain
observations (e.g., select angle and/or Doppler filter
outputs) is possible, and intuitively should yield
acceptable performance since the frequency domain
transform tends to compress the ground clutter
response into distinct angle-Doppler bins (see Fig. 8).

It is common to refer to STAP as any member
of the class of linear, adaptive filtering algorithms
operating on space-time observations to enhance
certain characteristics, viz. target detection. Such
alternate STAP algorithms generally fall into one of
two groups based on the particular transformations
applied to the data. Reduced-dimension (RD) STAP
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methods apply data independent transformations
to pre-filter the data and reduce the number of
adaptive DoFs [6–8, 26–28]; reduced computational
burden and improved statistical convergence (i.e.,
reduced training sample support) are the primary
benefits. On the other hand, reduced-rank (RR) STAP
methods employ data dependent transformations
to construct the space-time adaptive filter [29–35];
improved statistical convergence is the objective of
RR-STAP. While RD and RR-STAP generally provide
good performance, some concerns include reduced
interference cancellation capability, degraded MDV
and potential impact on ancillary functions, such as
bearing estimation, as well as computational burden
in the RR-STAP case. Performance metrics given in
Section IV apply to the RD or RR-STAP architectures.
In RD-STAP, a linear transformation projects the

space-time data vector xk into a lower dimensional
subspace. The transformed data vector is

x̃k = T
Hxk, T � CNMxJ (36)

where J �NM and x̃k has dimension J � 1.
Computational burden associated with matrix
inversion drops from O(N3M3) to O(J3), and nominal
sample support decreases from 2NM to 2J in accord
with the RMB rule.
The J � J null-hypothesis covariance matrix

corresponding to (36) is

R̃k = E[x̃k=H0 x̃
H
k=H0

] = THRkT: (37)

Applying the same transformation to the space-time
steering vector gives s̃= THss�t(fsp, f̃d). The

corresponding optimal weight vector is w̃k =
˜̄R̃�1k s̃,

for arbitrary scalar ˜̄. The adaptive solution involves

calculating
ˆ̃
Rk from (24) using the transformed

training data set �THxm�Pm=1, replacing s̃ with the
hypothesized steering vector ṽ, and then forming and

applying the adaptive weight vector ˆ̃wk =
ˆ̃
R
�1
k ṽ.

A variety of choices for T are possible. Naturally,
the best choices provide an effective combination
of DoFs to mitigate interference while minimizing
computational burden and the requisite number
of training samples for covariance estimation.
Common selections for T include: post-Doppler
transformation with selection of multiple adjacent
bins [26]; post-Doppler, beamspace transformation,
with selection of adjacent Doppler filters and spatial
beams [27]; and, pre-Doppler, adaptive filtering of
multiple, adjacent pulses, followed by traditional
Doppler processing to achieve integration gain [28].
Fig. 10 depicts the processing flow for the former
two methods. The common radar processing building
blocks—Doppler processing and beamforming—serve
as the foundation for these approaches. Three to
five adjacent bins are typical for the multi-bin,
post-Doppler approach with full spatial DoFs

available, as shown in the top of Fig. 10. In contrast,
the post-Doppler, beamspace technique appearing on
the bottom of Fig. 10 provides a different complement
of spatial (angle) and temporal (Doppler) DoFs;
three to five adjacent angle-Doppler bins (nine to
twenty-five total DoFs) is typical.

Reduced-rank STAP takes advantage of the low
rank nature of clutter and jamming observations [6, 7,
29–35]. Transformations applied to the data are
necessarily data dependent. To illustrate the basic
concept, we consider two cases taken from [31, 32].

The eigen-decomposition of the space-time
covariance matrix is

Rk =
NM�
m=1

¸k=mqk=mq
H
k=m (38)

where qk=m is an eigenvector corresponding to
eigenvalue ¸k=m [16]. The optimal weight vector in
(22) can be written

wk =
1
¸0

�
ss�t(fsp, f̃d)�

NM�
m=1

¸k=m� ¸0
¸k=m

®k=mqk=m

�

(39)
where ¸0 = min(¸k=m) and ®k=m =

proj(qk=m,ss�t(fsp, f̃d)). This result was first given in
[32] and suggests one can view STAP as an adaptive
pattern synthesis: the filter places notches in the
quiescent response, given by ss�t(fsp, f̃d), at locations
given by qk=m and where ¸k=m controls the null-depth.
The adaptive filter output is

yk =
sHs�t(fsp, f̃d)

¸0

�
INM�

NM�
m=1

¸k=m� ¸0
¸k=m

qk=mq
H
k=m

�
xk

(40)
thereby suggesting the subtraction of weighted
eigen-components from the space-time data vector
xk followed by matched filtering. (Noting that ak=m =
qHk=mxk is a Karhunen-Loeve coefficient [16] clarifies
this point.) When inserting the covariance estimate
into (39), the source of potentially poor adaptive
filter response is evident: the perturbed noise floor
estimate leads to the subtraction of random, noise-like
eigenvectors from the quiescent response, resulting
in elevated filter sidelobes. The reduced-rank version
improves on this situation by only incorporating those
eigenvectors corresponding to the J �NM largest
eigenvalues. Hence, the resulting filter is called a
principal components, reduced-rank filter.

The principal components inverse (PCI) solution
applies when ¸k=m� ¸0 for all signal subspaces [29,
31, 33–35]. Assuming J colored-noise components,

yk = s
H
s�t(fsp, f̃d)

�
INM�

J�
m=1

qmq
H
m

�
xk: (41)
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Fig. 10. Comparison of element-space, post-Doppler (top), and beamspace, post-Doppler (bottom) reduced-dimension STAP.

Equation (41) follows from (40) by setting the
eigenvalue weighting in the summation to unity
and removing the ¸0 normalization of the matched
filter. The filter given by (41) implements orthogonal
projection to cancel interference and then applies
a matched filter. The size of the training set
reduces to 2J, or twice the interference rank, for
performance roughly equivalent to the full DoF

STAP case employing 2NM training data. Further
development of the PCI method, including discussion
of statistical convergence improvements in contrast
to the RMB rule, is given in [33–35]. Because of its
enhanced convergence, RR-STAP can provide better
performance than the SMI formulation operating
with limited training data; the corresponding cost of
RR-STAP includes the use of the computationally
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demanding singular value decomposition (SVD) and
a mechanism for rank determination.
The recently introduced parametric adaptive

matched filter (PAMF) [36] employs a low order,
multi-channel autoregressive model to characterize
the interference environment; this method enhances
covariance matrix estimation when employing
low sample support, exhibiting rapid convergence
to the performance bound set by the optimum
filter. By utilizing all NM space-time DoFs, the
PAMF suffers no performance loss due to reduced
dimensionality. Since the method does not explicitly
employ rank-reduction, the PAMF does not neatly
fit into either reduced-dimension or reduced-rank
categories previously discussed. Extensions of the
PAMF to non-Gaussian clutter mitigation have also
been considered and are extensively documented in
[37–39].

VI. OVERVIEW OF SOME CURRENT TOPICS

Previous sections of this paper discuss fundamental
aspects of STAP. In this next section of the paper
we briefly highlight current STAP trends. While
our treatment of each topic is cursory, making the
reader aware of recent STAP initiatives and discussing
those areas where STAP is impacting radar system
development serves as our primary motivation. This
list of topics is not exhaustive, but does cover a fairly
broad range of STAP activity.

A. STAP Application to Space-Based Radar

Space-based radar (SBR) provides the potential for
near-continuous surveillance coverage of the Earth’s
surface. Since the SBR is down-looking, clutter and
jammer mitigation techniques are integral parts of the
MTI mode design. An overview of SBR is given in
[40].
Major distinctions between spaceborne and

airborne platforms include the very high satellite
platform velocity (at lower orbits), much steeper
operational grazing angles, profound influence of the
antenna pattern, the potential for dramatic variation in
clutter statistics, size of the antenna footprint on the
ground, and the deterministic nature of the satellite
orbit. Additionally, the launch vehicle limits the size,
power and weight of the SBR system. In low earth
orbit, the satellite travels at approximately 7 km/s;
this contrasts with the 120–220 m/s velocity typical of
airborne surveillance radar. At higher grazing angles,
the clutter is more specular, thereby increasing the
amount of clutter power competing with the target
signal. The field of regard for SBR is very large.
Hence, the system can survey large areas, but clutter
cultural features can change dramatically. Also, in
SBR MTI, the pulse repetition frequency (PRF) is

Fig. 11. MVDR spectra using SBR parameters defined in [41].

set to avoid range ambiguities in the radar footprint.
The limited PRF leads to substantial Doppler aliasing.
Perhaps, most importantly, the azimuth dimension
of the aperture strongly influences mainbeam clutter
spread. STAP plays an important role in overcoming
some of the diffraction-limited characteristics of
deployable space-based arrays whose size is limited
by launch vehicle constraints. Also, by maximizing
SINR, STAP provides the best detection performance
potential for a fixed dwell; hence, STAP reduces the
dwell time necessary to achieve a specified PD, hence
supporting high area coverage rates.

Using the clutter model of (13), with additional
modeling to incorporate orbital mechanics, we arrive
at the clutter-plus-noise MVDR spectra of Fig. 11;
parameters for the simulation come from [41].
Sixty-four pulses comprise the coherent dwell and
the array is linear with twelve spatial channels. Array
dimensions are 16 m in azimuth by 2.5 m in elevation.
A key observation concerning Fig. 11 is the high
degree of aliasing, mainly in Doppler, but also in
angle. (Angle ambiguity occurs because the separation
between the twelve spatial channels far exceeds
one-half of a wavelength; the pattern shown in Fig.
11 repeats itself in angle.) Fig. 11 makes it clear that
SBR MTI is an endo-clutter detection problem: the
target signal directly competes with mainbeam clutter
over virtually the entire unambiguous Doppler space.

Fig. 12 shows the SINR loss curve using the
optimal space-time processor; the results provide an
acceptable match to those in [41]. Observe the poor
performance of the 8 m azimuth by 5 m elevation
array (40 m2 total). The shorter azimuth dimension
leads to increased beamwidth. The mainbeam clutter
spread across this increased azimuth beamwidth is
very large; in combination with signal aliasing, clutter
affects all Doppler frequencies. The 16 m azimuth
by 2.5 m elevation antenna maintains the imposed
40 m2 aperture stow size, yet provides significantly
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Fig. 12. SBR SINR loss for varying antenna size and optimal
space-time processing.

better performance. Since the azimuth beamwidth is
much narrower for the 16 m dimension, mainbeam
clutter spread is minimized. The reduced mainbeam
clutter spread translates into much better SINR loss
performance. Hence, STAP for SBR is a full system
design task, coupling algorithm selection with the
appropriate choice of radar system parameters. While
not shown herein, the performance of the non-adaptive
processor is unacceptable.
A notional signal processing architecture for a

spaceborne ground moving target indication (GMTI)
radar is given in [41]. A multi-channel array is broken
into sub-arrays; the sub-arrays are then used for
adaptive jammer and clutter cancellation. Sub-band
filtering—sub-dividing the received signal into smaller
width frequency bins—is used to compensate for
signal bandwidth. Without sub-banding, dispersion
across the array degrades cancellation performance.
Essentially, the processor applies narrowband
STAP within each sub-band. Jammer cancellation
occurs in a separate step from clutter mitigation
to reduce computational burden and training data
requirements. The jammer cancellation step requires
a special training interval and operates in beamspace.
Jammer canceled beams are then pulse compressed
and fed into a beamspace STAP used to mitigate
clutter. After clutter cancellation, the processor
re-stitches the waveform in the sub-band combiner
to achieve the original range resolution. Scalar data
then proceed to a detector, such as a cell averaging
constant false alarm rate (CA-CFAR) circuit. The
post-processor accomplishes target tracking. Adaptive
array processing plays a key role in this architecture:
a one-dimensional adaptive canceler suppresses the
jammer, while the two-dimensional STAP minimizes
the impact of clutter on detection performance.
References [42, 43] describe the application

of STAP to sparse, distributed aperture SBR.

Non-uniform spatial sampling—to disturb grating
lobes—in combination with a non-sidelooking
antenna configuration, leads to non-stationary clutter
conditions; [44] describes this SBR challenge and
considers ameliorating solutions.

B. Bistatic STAP

Bistatic radar systems offer several advantages
over their monostatic counterparts, including reduced
space loss, silent operation, reduced susceptibility to
jamming, and synergistic coherent operation with
existing systems. Among its drawbacks, bistatic
aerospace radar systems must effectively cope with
severe, spectrally diverse ground clutter returns. For
this reason, effective bistatic clutter cancellation
techniques are crucial to look-down bistatic system
deployment.

The class of adaptive clutter filtering
techniques—viz., STAP and its variants—developed
for monostatic airborne radar offer a logical starting
framework in bistatics. However, the non-stationary
nature of bistatic ground clutter, resulting from
the complex influence of sensor geometry and
motion, directly violates intrinsic adaptive algorithm
assumptions. Non-stationarity leads to covariance
estimation errors and hence degrades adaptive filter
performance. For this reason, STAP techniques
developed for monostatic radar require modification
in the bistatic STAP case [45–52].

Table I summarizes some recently developed
bistatic STAP techniques given in [46–52]. The
performance of the different methods can vary
greatly. A progression from the most simplistic
approach—localized training—to more elaborate
methods is evident in the table.

C. Knowledge-Aided STAP

Typical STAP operating environments are
heterogeneous due to a variety of factors. As
described previously, STAP relies on a covariance
matrix estimate as part of its implementation; the
processor selects training data over range to arrive
at this estimate via the calculation in (24). When the
statistics of the training data vary with respect to the
properties of the test cell, the asymptotic covariance
matrix estimate is erroneous. The impact of this
erroneous estimate has been considered, for example,
in [53–56]. Table II provides a taxonomy of clutter
heterogeneity.

The judicious application of a priori knowledge
has shown potential to enhance performance in
complex, heterogeneous clutter environments
[57–59]. For example, target signals in the training
data substantially degrade detection performance
[56]. By using database information, such as
the knowledge sources listed in [59], to identify
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TABLE I
Summary of Bistatic STAP Techniques

Method Rationale References

Localized processing Local training selection minimizes non-stationarity. [46, 47, 49, 51]

Time-varying weights Approximate time-varying nature of unknown, optimal weight vector
by allowing linear variation over range.

[46, 48]

Localized time-varying weights Impose linear variation in weight vector by restricting training range
interval.

[49]

Doppler Warping Apply deterministic, complex taper to align clutter Doppler for
specified cone angle, thereby enhancing STAP training set.

[48]

Angle-Doppler compensation Deterministically align maximum angle-Doppler response (“spectral
centers”) over range to enhance STAP training set.

[50, 51]

Higher-order Doppler warping Deterministically align clutter Doppler over various cone angles. [52]

TABLE II
Taxonomy of Clutter Heterogeneity and Related Effects

Heterogeneity Type Causes Impact on Adaptive Radar

Amplitude Shadowing and obscuration, range-angle
dependent change in clutter reflectivity, strong
stationary discretes, sea spikes, urban centers,
land-sea interfaces, etc.

Null depth depends on eigenvalue ratio—MLE
“averaging” leads to underestimated eigenvalue
magnitude, and consequently, uncancelled clutter
and increased false alarm rate.

Spectral Intrinsic clutter motion due to soft scatterers
(trees, windblown fields, etc.), ocean waves,
weather effects.

Null width set to mean spread—too narrow for
some range cells, too wide for others—thereby
leading to either increased clutter residue or
signal cancellation. Degrades MDV.

CNR-dependent spectral
mismatch

Modulation of principal components and other
low power signal terms rise above the noise floor
with increases in CNR.

Same impact as spectral mismatch.

Moving Scatterers Ground traffic, weather, insects and birds, air
vehicles.

Mainlobe nulling, false sidelobe target
declarations, and distorted beam patterns exhaust
DoF.

Some Other Effects Chaff, multi-bounce/ multi-path, impact of
platform geometry (e.g., non-sidelooking or
bistatic) on angle-Doppler behavior over range.

Combination of above effects.

and screen roadways from the training set, or by
employing data-derived knowledge, tremendous
performance gains (approximately 15 dB for the
example in [56]) are possible. In [60], Farina et al.
describe a nonlinear STAP processing scheme relying
on a priori knowledge and data-derived characteristics
to enhance detection performance in heterogeneous
clutter environments. Both [56] and [60] use actual
measured data as part of the analysis.
The development of knowledge-aided STAP is a

major objective of the Defense Advanced Research
Projects Agency’s (DARPA’s) Knowledge-Aided
Sensor Signal Processing and Expert Reasoning
(KASSPER) Program, commenced in 2002 [61].

D. Multi-Channel Synthetic Aperture Radar (MSAR)

SAR processing is tantamount to matched filtering;
in general, each stationary scatterer has a unique phase

history exploitable by the processor to discriminate
and estimate electromagnetic reflectivity [1, 62]. The
phase history strictly depends on the time-varying
range between a single antenna phase center (APC)
and the scatterer as the platform flies a particular
path. The long-dwell nature of SAR translates
to resolution enhancements in the cross-range
(slow-time) dimension, nominally as a result of an
azimuth chirp signal at a Doppler offset corresponding
to the clutter patch’s cross range position.

Inherently, SAR makes no provision for moving
target detection. Depending on the particular target
motion, the corresponding image of the target
typically appears displaced in cross-range or blurred.
Despite these challenges, SAR plays a key role when
high cross-range resolution is necessary to identify
the particular target class. Additionally, to enhance
discrimination, the cancellation of stationary ground
clutter is desirable. Incorporating multiple SAR
receive channels is the best option for target imaging
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with simultaneous cancellation of stationary clutter
returns. Original multi-channel schemes relied on
the displaced phase center antenna (DPCA) principle
[1, 6, 7]. DPCA attempts to arrest platform motion;
hence, coupling DPCA with SAR processing on
each receive channel is often called arrested SAR
processing.
Timing errors, non-ideal sensor geometry,

beampattern mismatch and receiver channel errors
limit DPCA’s capability [6, 62]. To provide effective
clutter suppression, STAP is applied to complex,
multi-channel SAR data. Approaches for applying
STAP to multi-channel SAR are given in [62], and
for some architectures, appear reminiscent of the
post-Doppler STAP methods described in Section
V; actual measured data from the German AER-II
multi-channel SAR system are used to evaluate
performance.

E. Non-Sidelooking Configurations, Canted Arrays and
Nonlinear Arrays

Much of the basic STAP theory is developed for
side-looking array radar (SLAR) configurations [6–8].
This configuration is most benign, since ground clutter
Doppler and spatial frequencies are proportional
(see (6) and (14)), thereby suggesting a common
angle-Doppler response over range. The stationary
nature of the clutter angle-Doppler response facilitates
covariance matrix estimation.
In forward-looking array radar (FLAR),

an angle-Doppler dependence of the ground
clutter returns exists for slant ranges less than
five times the platform altitude. Reference [6]
describes this angle-Doppler dependence for the
FLAR configuration. The consequent covariance
matrix estimation errors resulting from the sensor
geometry-induced non-stationary nature of the
training data set leads to degraded detection
performance. To improve performance, a Doppler
compensation method is given in [63]. Similar clutter
non-stationarity occurs for canted arrays, which
likewise can be compensated through processing [64].
Non-linear arrays are under consideration for

effective sensor airframe mounting. The performance
of a circular, curved array is described in [65].
The nonlinear nature of the array induces clutter
nonstationarity—as a result of the same mechanism
leading to non-stationarity in FLAR and canted
arrays—which consequently degrades the adaptive
filter performance. Application of a time-varying
filter function [66, 67] is used in [65] to improve
performance.

VII. SUMMARY

This paper provides a tutorial overview of
STAP for aerospace moving target indication radar

applications. STAP is a data-domain implementation
of an optimum filter applied to space-time samples for
a given range.

Our introductory comments mentioned the
monotonic relationship between SINR and
probability of detection for a fixed false alarm rate.
In clutter-limited environments, STAP efficiently
maximizes output SINR to maximize the probability
of detection. To understand the properties of ground
clutter and narrowband noise jamming, we described
spatial, temporal and space-time sampling using a
multi-channel, multi-pulse radar system. We then
described space-time clutter and jammer models;
the clutter model was validated with measured,
airborne radar data. Subsequently, we developed the
STAP weight vector formulation and then discussed
critical performance metrics (probability of detection,
SINR loss and improvement factor). We formulated
reduced-dimension and reduced-rank STAP methods
as approaches to improve statistical convergence and,
in the reduced-dimension STAP case, to mitigate
computational burden. The paper culminated with
a brief overview of some current topics: STAP for
space-based radar, bistatic STAP, knowledge-aided
STAP, STAP application to multi-channel SAR,
and the use of STAP in non-sidelooking array
configurations.
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This article describes a new probabilistic method called the

“class-specific method” (CSM). CSM has the potential to avoid

the “curse of dimensionality” which plagues most classifiers

which attempt to determine the decision boundaries in a

high-dimensional featue space. In contrast, in CSM, it is possible

to build classifiers without a common feature space. Separate

low-dimensional features sets may be defined for each class, while

the decision functions are projected back to the common raw data

space. CSM effectively extends the classical classification theory

to handle multiple feature spaces. It is completely general, and

requires no simplifying assumption such as Gaussianity or that

data lies in linear subspaces.
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I. INTRODUCTION AND BACKGROUND

The purpose of this article is to introduce the
reader to the basic principles of classification with
class-specific features. It is written both for readers
interested in only the basic concepts as well as those
interested in getting started in applying the method.
For in-depth coverage, the reader is referred to a more
detailed article [1].

Classification is the process of assigning data
to one of a set of pre-determined class labels [2].
Classification is a fundamental problem that has
to be solved if machines are to approximate the
human functions of recognizing sounds, images, or
other sensory inputs. This is why classification is so
important for automation in today’s commercial and
military arenas.

Many of us have first-hand knowledge of
successful automated recognition systems from
cameras that recognize faces in airports to computers
that can scan and read printed and handwritten text,
or systems that can recognize human speech. These
systems are becoming more and more reliable and
accurate. Given reasonably clean input data, the
performance is often quite good if not perfect. But
many of these systems fail in applications where
clean, uncorrupted data is not available or if the
problem is complicated by variability of conditions
or by proliferation of inputs from unknown sources.
In military environments, the targets to be recognized
are often uncooperative and hidden in clutter and
interference. In short, military uses of such systems
still fall far short of what a well-trained alert human
operator can achieve.

We are often perplexed by the wide gap of
performance between humans and automated systems.
Allow a human listener to hear two or three examples
of a sound—such as a car door slamming. From
these few examples, the human can recognize
the sound again and not confuse it with similar
interfering sounds. But try the same experiment with
general-purpose classifiers using neural networks
and the story is quite different. Depending on the
problem, the automated system may require hundreds,
thousands, even millions of examples for training
before it becomes both robust and reliable.

Why? The answer lies in what is known as the
“curse of dimensionality.” General-purpose classifiers
need to extract a large number of measurements,
or features, from the data to account for all the
different possibilities of data types. The large
collection of features form a high-dimensional space
that the classifier has to sub-divide into decision
boundaries. It is well-known that the complexity of
a high-dimensional space increases exponentially
with the number of measurements [3]—and so does
the difficulty of finding the best decision boundaries
from a fixed amount of training data. Unless a lot
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is known about the data, allowing the features to
be suitably conditioned so that the data samples fall
in nicely organized patterns in the feature space,
finding the “optimum” decision boundaries in a
feature space above about 5 dimensions is futile
[4]. Optimum decision boundaries require finding
the probability distributions (probability density
functions or PDFs) of each class in the feature space
[2]. Sub-optimal decision boundaries, that is based
on simplified probability models, or simple search
procedures such as “nearest neighbor,” can achieve
very good performance if the data from the various
classes are well separated in the feature space, but fail
dramatically if there is any degradation of training
data or input data quality.
These problems can potentially be avoided if we

avoid working in a high-dimensional space. But how
can we avoid working in high dimensions if all the
measurements (features) carry pertinent information?
One way is to keep a large number of features, but
divide up the features according to their relevance
to a particular class (class-specific features) and
process them separately. Many schemes have been
invented to try to find suitable rules for combining
the processors [5, 6, 7, 8, 9, 10]. While they are on
the right track, the problem with these classifiers is
that they generally are unable to combine the results
of the individual decisions in a way that is both
theoretically optimal and completely general at the
same time. What is needed is an extension to the
classical theory of hypothesis testing that can account
for class-specific features.
In answer to this need, the author proposed

the class-specific method (CSM) in 1998 [11, 12, 13].
The initial formulation of the method suffered
from several difficulties which were solved with
the publication of the PDF projection theorem in
2000 [14, 15]. Further enhancements of the theory
have resulted from the chain-rule [16, 1] a recursive
application of the PDF projection theorem. The
resulting classifier architecture, called the chain-rule
processor [16, 1], blends the best aspects of signal
processing and classification. CSM is completely
general and makes no assumptions about the data such
as that it yields to linear subspace decomposition.
Nor does it require any special topology such as a
binary tree of decisions. In fact, the classical feature
classifier is a special case CSM that occurs when all
classes are represented by a common feature set. But,
unlike the classical classifier, CSM can circumvent
the curse of dimensionality if each class can be
represented (statistically described) using a separate
low-dimensional feature set.

II. CLASSICAL APPROACH

The classical Bayesian classifier selects the most
likely class hypothesis given the data according

Fig. 1. Illustration of classical approach to classification. Original
raw data space (X) is mapped to a feature space (Z) where the
PDFs are approximated (ellipses) and decision boundaries (line)
are constructed. Because of potential information loss, the classes

can become overlapped in Z, causing classification errors.

to
j� = arg

M
max
j=1

p(Hj � x)

where x is the data and �H1,H2, : : : ,HM� are the M
class hypotheses. Using Bayes rule, this may be
written

j� = argmax
j
p(x �Hj)p(Hj), (1)

where p(Hj) is the class prior probability for class
Hj and (x �Hj) is the probability density functions
(PDF) of the data assuming class Hj is true (otherwise
known as the likelihood function). This classifier has
the lowest expected cost (or lowest probability of error
for equal class prior probabilities) of all classifiers
[2, 17]. Unfortunately, the PDFs are unknown and
need to be estimated from training data. Because the
dimension of the raw data is too high, x has to be
reduced to a set of information-bearing features using
a feature transformation z= T(x). If it is possible to
find a low-dimensional feature set that contains most
or all of the necessary information, the problem can
then be re-formulated in terms of z. By regarding z as
the data, the Bayesian feature classifier becomes

j� = argmax
j
p̂(z �Hj)p(Hj)

where p̂(z �Hj) are the feature PDFs estimated from
training data.

The classical approach to classification is
summarized graphically in Fig. 1 for two data classes.
The original raw data space (X) is mapped to a feature
space (Z) where the PDFs are estimated and the
decision boundaries are constructed. The curse of
dimensionality forces the following trade-off: If the
feature dimension is too high, there are severe errors
in PDF estimation causing classification errors. If the
feature dimension is too low, the loss of information
causes the classes to become overlapped in Z, also
causing classification errors. There may be no feature
dimension where the performance is acceptable. In
short, the curse of dimensionality cannot be overcome.
Once the raw data is discarded in favor of a common
set of features, all hope is lost for achieving the best
possible performance.
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Fig. 2. Illustration of the first step of CSM. A separate feature
transformation is designed for each class. Feature PDFs for each
class are estimated on the corresponding feature space (ellipses).

III. CLASS-SPECIFIC METHOD (CSM)

Because this is a tutorial paper, we present only
the most basic mathematical concepts of CSM. For
further reading, the reader is referred to the most
recent publications [1].
The classical approach loses the fight against the

curse of dimensionality because it puts “all of its eggs
in one basket.” It requires a low-dimensional feature
set that contains all of the necessary information—an
impossible request. Instead of discarding the raw data,
CSM actually operates in the raw data domain—but it
estimates the PDFs in low-dimensional feature spaces.
This requires a two-step procedure.

A. Step 1: Feature Transformation and PDF Estimation

First, the raw data is transformed into
class-specific low-dimensional feature spaces. Let

z1 = T1(x)

z2 = T2(x)

...

zM = TM(x)

be the M different feature sets and feature
transformations. The PDFs p(zm �Hm), 1�m �M,
are then estimated from training data. This first step is
illustrated in Fig. 2.

B. Step 2: PDF Projection Back to Raw Data Domain

Next, CSM converts the feature PDFs into
raw-data PDFs. It projects the PDFs back to the
raw data domain where the decision boundaries are
constructed. CSM avoids the complexity issues of
the raw-data space because the projection operators
(functions that transform the PDFs to the raw data
domain) are known functions that can be determined

Fig. 3. Illustration of the second step of CSM. Feature PDFs are
projected back to the raw data space where the decision

boundaries are constructed.

Fig. 4. Illustration of the PDF projection operation. Projection
can be accomplished only if is possible to know both the raw data

PDF and feature PDF for some reference hypothesis H0.

exactly from the feature transformations. This last step
is illustrated in Fig. 3.

C. How the Projection Works

Projecting the PDF from the feature domain back
to the raw data domain is made possible by the PDF
projection theorem [15, 14]. This theorem may be
thought of as a generalization of the well-known
change-of-variables theorem which relates the
PDF of y to the PDF of x when related by the 1 : 1
transformation y= f(x). For continuous invertible
transformations, it is a simple matter to recover the
PDF of x from the PDF of y using the formula

px(x) =
����@y@x

����py(y): (2)

The PDF projection theorem (PPT) is a generalization
of (2) for many-to-one transformations. Under certain
conditions (having to do with sufficient statistics) it
is possible to actually recover px(x) from the feature
PDF. In general, however, the PPT can only find
a particular one of the many possible PDFs of x
that could have produced the given feature PDF.
This particular choice has some nice properties. The
projection operation is illustrated in Fig. 4. Projection
can only be accomplished if it is possible to know
both the raw data PDF and feature PDF under some
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reference hypothesis H0. In general, it is impossible
to determine the raw data PDF if all we know is the
feature PDF. The projection operation finds only an
approximation to the true raw data PDF of the given
class hypothesis. The projected PDF defined on the
raw data domain is given mathematically by

pp(x �Hj)
¢
=

�
p(x �H0,j)
p(zj �H0,j)

�
p̂(zj �Hj) (3)

where H0,j are the class-specific reference
hypotheses. Thus, the partial derivative (which
generalizes to the determinant of the Jacobian
matrix for multi-dimensions) in (2) is replaced by
a ratio of PDFs. As expected, the PDF projection
theorem simplifies to (2) for continuous invertible
transformations. It may be proved [15, 14] that
pp(x �Hj) is a PDF, so it integrates to 1 on the raw
data space, and that it is a member of the class of
PDFs which generate the original feature PDF
p̂(z �Hj). This means that if a random variable x
is drawn from the PDF in (3), and the result is
transformed by the feature transformation zj = Tj(x),
then the PDF of zj will be precisely p̂(zj �Hj), i.e. the
projection process comes full circle.
Various interpretations of the projection theorem

can be suggested. One interpretation is that since there
are an infinite number of raw data PDFs that generate
the feature PDF, it is necessary to invoke a constraint
so that one unique raw data PDF can be found. The
applicable constraint is that the likelihood ratio with
respect to the reference hypothesis remains constant in
either domain:

pp(x �Hj)
p(x �H0,j)

=
p̂(zj �Hj)
p(zj �H0,j)

:

Another interpretation is possible if we reverse
the usual thinking. Normally we start with two
statistical hypothesis, then seek a sufficient statistic for
differentiating between them. But we could also start
with just one hypothesis (H0,j) and a statistic (zj) and
ask “what would be a second hypothesis for which
zj is sufficient against H0,j?”. The PDF constructed
according to (3) is the second hypothesis we seek.
Thus, zj is sufficient for H0,j versus the hypothesis
that pp(x �Hj) is true.

D. How to Choose the Reference Hypothesis

A detailed mathematical treatment of the issues
surrounding the reference hypothesis are given in [1].
Briefly, the conditions that H0 must satisfy for the
projection (3) to result in a valid PDF are that p(z �H0)
must never be precisely zero at any place where
sample data can lie—otherwise, the term in the
brackets in (3) cannot be evaluated. This is a rather
mild constraint, easily satisfied by the most common
PDFs such as Gaussian and exponential

(assuming negative values are illegal). As long as this
condition holds, (3) will be a PDF and will be among
the class of PDFs which give rise to the specified
feature PDF p̂(zj �Hj) when transformed by the given
feature transformation. That being said, there are
good and bad choices for H0,j . A good choice of
H0,j (one that will result in a good approximation to
p(x �Hj)) is one for which the features zj = Tj(x) are
approximately sufficient statistics for testing Hj versus
H0,j . Sufficiency is meant in the statistical sense, and
does not mean “just good enough.” It means that all
information necessary to separate H0,j from Hj is
present. Remember, though, that this condition is a
goal, not a requirement and should not discourage
anyone from trying a particular feature set. The closer
the sufficiency condition can be approximated, the
better the projected PDF will approximate p(x �Hj).
It is also advisable that H0,j be such that p(x �H0,j)
and p(z �H0,j) can both be determined either in closed
form, or else to a good approximation, even in the
(far) tails.

E. How to Build a CSM Classifier

By substitution of (3) into the Bayesian classifier
(1), the CSM classifier results:

j� = arg
M
max
j=1

�
p(x �H0,j)
p(zj �H0,j)

�
p̂(zj �Hj)p(Hj): (4)

The ratio

J(x,Tj ,H0,j)
¢
=

�
p(x �H0,j)
p(zj �H0,j)

�
(5)

we call the “J-function” and may be considered
generalized Jacobian or correction term necessary to
create the optimal Bayes classifier from the various
feature PDFs.

F. When is CSM Optimal?

Clearly if the projected PDFs (3) are valid PDFs,
no matter if they are accurate approximations to
the desired PDFs p(x �Hj), the classifier (4) is a
valid probabilistic classifier. Optimality occurs when
the projected PDFs are equal to the desired PDFs.
This happens when (1) the estimated feature PDFs,
p̂(zj �Hj), are equal to the true feature PDFs, and
(2) when the class-specific features, zj = Tj(x) are
sufficient statistics for deciding between the given
class Hj and the chosen reference hypotheses H0,j .
Because the designer can choose both Tj( ) and H0,j ,
it is to the designer’s benefit to choose them jointly
to approximate this condition. Note also that H0,j
must be chosen from those hypotheses for which it
is possible to solve for both p(x �H0,j) and p(zj �H0,j).
It is not always easy, but great strides have been made
in recent years in being able to solve for the feature
PDFs for many useful types of features [18, 19].
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Fig. 5. Classification performance of CSM compared with
classical approach in a 9-class synthetic data experiment. Classical
approach used an 11-dimensional feature set composed of the

union of all class-specific features.

G. Why is CSM Better Than the Classical Approach?

Both CSM and the classical approach have
the same theoretical performance because they
are both based on the optimal Bayesian classifier
(1). Indeed, this is demonstrated in an experiment
where a class-specific classifier was compared to a
classical classifier using exactly the same features
[11]. In the 9-class synthetic data experiment, the
class-specific classifier used feature sets of dimension
between 1 and 2, while the classical (full-dimensional)
classifier operated on an 11-dimensional feature
set (the union of the class-specific features). The
performance was plotted as a function of the number
of training samples and is repeated in Fig. 5. It
shows that although the maximum performance
of the classical classifier was the same, it required
more than two orders of magnitude more training
data to achieve it. Now imagine that only about 100
samples were available—observe on the graph the
gap in performance that would exist. But the classical
approach can never attain the promised performance
because it needs to form a common feature set where
the PDFs are estimated. The curse of dimensionality
exacts a heavy toll on performance. For a given
maximum feature dimension, CSM can collect much
more information from the raw data because it can
divide the information up according to class.

H. Paradigm Shift

Those that have worked with the classical
approach have difficulty changing over to CSM which
is an entirely new paradigm. Someone trained to
view features as carrying information to distinguish
one class from another may have a difficult time

Fig. 6. Classical paradigm for a notional 4-class classification
problem. Box on the right lists six measurements or “features”

useful for classifying the four classes.

Fig. 7. Class-specific paradigm for a fixed reference hypothesis.
Features (in box) are required to discriminate each class from the

common reference hypothesis. Note that fewer features are
required for the simpler binary problems.

viewing features in a way that ignores the other
classes. A simple geometric example can illustrate
the paradigm shift. Fig. 6 shows a notional 4-class
problem involving sets of geometric shapes. The
classical paradigm involves finding features that are
able to discriminate among the four classes. A list of
six measurements or “features” are provided in the
yellow box on the right side of the figure. These six
features are adequate for discrimination among the
four classes. The mathematical implementation of the
classical feature paradigm involves the maximization
of the feature PDF:

j� = argmax
j
p(z �Hj)

where z= T(x) is a common feature set.
Fig. 7 illustrates the class-specific paradigm using

a fixed reference hypothesis. The features are required
to discriminate each class from the common reference
hypothesis. This is the original formulation of CSM
but has a number of difficulties arising from the
use of a common fixed reference hypothesis. The
mathematical implementation of the fixed-reference
class-specific paradigm involves the maximization of
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Fig. 8. Class-specific paradigm for class-specific reference
hypotheses. Features are required to discriminate each class from

the corresponding class-specific reference hypothesis.

the likelihood ratios

j� = argmax
j

p(zj �Hj)
p(zj �H0)

where zj = Tj(x), for j = 1, : : : ,M , are class-specific
feature sets.
Fig. 8 illustrates the class-specific paradigm using

class-specific reference hypotheses. Class-specific
features are not chosen to discriminate a class from
other classes, they are chosen to discriminate each
class from the corresponding class-specific reference
hypothesis which may be regarded as a special
member of the class. In effect, this means the features
are chosen to describe the class. It is important to
remember that discrimination happens automatically
if each class is well described. In effect, choosing
features for description results in the same (or more)
feature information content as discrimination but
it assigns the information only to those classes for
which it is relevant. In spite of this, it is a difficult
paradigm shift to make for many people who have
been taught to choose features for discriminatory
power. The mathematical implementation of the
class-specific paradigm involves the maximization of
the projected PDFs

j� = argmax
j
pp(x �Hj)

where

pp(x �Hj) =
p(x �H0,j)
p(zj �H0,j)

p(zj �Hj)

where zj = Tj(x), for j = 1, : : : ,M , are class-specific
feature sets and H0,j , for j = 1, : : : ,M , are class-
specific reference hypotheses.

I. Working in the Raw Data Domain

CSM creates decision boundaries in the raw data
domain instead of in a common feature domain. This
sounds troublesome at first. After all, the raw data
dimension can be very large and we are interested
in reducing the dimension! But remember that the

dimension is only a problem for PDF estimation
which happens on the low-dimensional feature space,
not in the raw data space. Projecting to the raw
data domain is done for us by the J-function (5)
which does not suffer from the dimensionality curse
because it does not need to be found empirically. The
J-function can be determined exactly by analysis of
the feature transformations.

There is a clear advantage to working in the raw
data domain because it is a common ground where
everything can be compared fairly. Interestingly,
CSM is not the first attempt to work in the raw
data domain. For example, Bishop [20] creates
raw data PDFs, but his approach requires linear
transformations to be tractable and amounts to
something akin to principal component analysis
(PCA). CSM, on the other hand, is completely
general. The “ace in the hole” is the fact that the
projected PDF is indeed a PDF and it depends only
upon a few parameters—the parameters of the feature
PDF and of the feature transformation and reference
hypothesis. All of these parameters are “fair game”
in a maximum likelihood maximization. Have you
an idea for a better feature set? Compare it to the
existing feature set based on the maximum likelihood
principle. Have you an idea for a better reference
hypothesis? Compare it to the existing reference
hypothesis based on the maximum likelihood
principle. This idea can is represented mathematically
as

L(x1, : : : ,xK ,H0,T,μ)

= max
H0,T,μ

K�
k=1

log
��

p(xk �H0)
pz(T(xk) �H0)

�
pz(T(xk);μ)

	

(6)

K is the number of independent data samples and
the subscript z is a reminder that the PDF pz( )
is a function of the features z= T(x). To avoid
“over-training,” when implementing (6) in practice,
it is recommended that the data be partitioned
into separate training and testing sets for cross-
validation.

J. Classifying Without Training

The PPT (3) is a decomposition of the raw
data PDF into a trained and an untrained factors.
The trained factor is the feature PDF p̂(zj �Hj)
which needs to be estimated from training data
of the corresponding class. The untrained factor
[p(x �H0,j)=p(zj �H0,j)] is a known function of the
input raw data x, feature transformation Tj( ), and
reference hypothesis H0,j . But, for a fixed x, it also
can be viewed as a function of j. Thus, it contributes,
sometimes in a dominant role, to the classification
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decision. While the trained component asks “how
does this sample compare with trained patterns?”,
the untrained component asks “how well does this
feature set represent this raw data sample?”. The
untrained component can be seen as a generalization
of a matched filter.
To see this, we consider a bank of linear

matched filters as a set of class-specific feature
extractors

zj = Tj(x) = �w�jx�2

where wj is a signal template. Let wj be normalized
such that w�jwj = 1. The simple matched filter bank
classifier is given by

j� = argmax
j
zj :

Let us now design a class-specific classifier for
these features. Under the reference hypothesis of
independent Gaussian noise of variance 1, zj is
distributed Â2(1)

p(zj �H0) =
1

2¼zj

exp
�
	 zj
2

�
:

The PDF of x under H0 is the Gaussian PDF

p(x �H0) = (2¼)	N=2 exp

	1
2

N�
n=1

x2n

�
:

The log-J-function is easily shown to be

log Jj(x,zj) = log p(x �H0)	 log p(zj �H0)

= 1
2 (log zj + zj) +C(x)

where C(x) does not depend on j. The complete
class-specific classifier is:

argmax
j
log Jj(x,zj) + log p(zj �Hj): (7)

Since log Jj is a monotonic increasing function of zj ,
using only log Jj(x,zj) as a classifier is equivalent
to the matched filter bank classifier. Note that by
ignoring the last term in (7) effectively assumes
that each class has the same expected amplitude
distribution.
It is clear that classification is quite possible

without training as long as each class requires a
distinctly different feature set for representation. This
idea should not be taken literally without some care.
Generalizing the “J-function-only” classifier to cases
where the features are not matched filters, requires
that some kind of a priori feature PDF should be used
to account for differences in feature dimension and
scaling. Note that this requirement is relaxed if the
J-function is highly dominant.

IV. CHAIN RULE AND THE CHAIN-RULE
PROCESSOR

As part of the paradigm shift from the classical
architecture, we recommend looking at a sophisticated
general-purpose classifier as a bank of signal
processors. Each signal processor may be thought
of as an optimal detector for differentiating the
given class from the corresponding reference
hypothesis. Each signal processor may be composed
of multiple processing stages. If we regard the feature
transformation z= T(x) as a single step, we write the
projected PDF as

pp(x �H1) =
�
p(x �H0)
p(z �H0)

�
p̂(z �H1):

However, if we regard the feature transformation
as three separate stages, y= T�(x), w= T��(y), then
z= T���(w), we may apply the PDF projection theorem
recursively. For the first stage, we have

pp(x �H1) =
�
p(x �H0)
p(y �H0)

�
pp(y �H1):

Applying the same concept to pp(y �H1), we have

pp(y �H1) =
�
p(y �H �0)
p(w �H �0)

�
pp(w �H1)

and so on. The complete break-down is written

pp(x �H1) =
�
p(x �H0)
p(y �H0)

��
p(y �H �

0)
p(w �H �

0)

��
p(w �H ��

0 )
p(z �H ��

0 )

�
p̂(z �H1)

(8)

where H0, H
�
0, H

��
0 are reference hypotheses suited to

each stage in the processing chain. The advantage of
this approach is first that many processing chains may
share the same first stages of processing, thus saving
processing. Furthermore, analyzing just one stage at
a time simplifies the analysis. Finally, there is great
advantage in software modularity because each stage
of processing can be encapsulated as a module.

A. Feature Modules

Feature modules are pre-packaged software
modules that contain both feature calculation and
J-function calculation. The three modules necessary
for implementing the above three-stage chain would
be

Module 1: y= T�(x), j1 = log
p(x �H0)
p(y �H0)

Module 2: w= T��(y), j2 = log
p(y �H �0)
p(w �H �0)

Module 3: z= T���(w), j3 = log
p(w �H ��0 )
p(z �H ��0 )

:
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Fig. 9. Block diagram of a class-specific classifier using chain rule processors.

Completion of the processing chain is accomplished
by accumulating the “correction terms”

log pp(x �H1) = j1 + j2 + j3 + log p̂(z �H1): (9)

Class-specific classifiers can be rapidly designed by
stringing together chains of pre-designed modules and
accumulating the log J-function values.

B. Classifier Architecture

Implementation of a classifier is illustrated in
Fig. 9. Each horizontal chain corresponds to one
class. The chains are made up of series of modules.
In accordance with (9), each module adds the
corresponding correction term (J-function) to the
stream. At the end, the aggregate J-function is added
to the log feature PDF to arrive at the class output
value.

V. BUILDING A CLASSIFIER

Because CSM is new, there is a large learning
curve for those being introduced to it. There are many
difficulties and pitfalls associated with building a
classifier that should be mentioned.

A. Common Problems

The following is a list of problems and difficulties
that are often encountered in designing and
implementing a class-specific classifier.

1) Sufficiency. Recall that the designer should, as
a goal, strive for a feature set/reference hypothesis
combination where the features are approximately
sufficient to discriminate the class of interest from
the reference hypothesis. Sufficiency is does not
mean “just enough,” i.e. sufficient to get the job
done. Sufficiency means all of the information has
been extracted for discrimination. But this is a goal,
not a requirement. It should not discourage anyone
from using a set of features that is reasonable. A
common mistake is to leave out a significant amount
of information relating to the discrimination of a
given class from the fixed reference hypothesis
simply because it is not necessary to discriminate the
data most if not all of the time. Here’s an example.
Consider discriminating a sinewave in additive
correlated noise from a reference hypothesis of
independent noise. While it may be adequate to
concentrate on the sinewave, do not lose sight of the
fact that the background noise also is different from
H0 and can significantly contribute to discrimination.
It would be better in this case to use the correlated
noise as the reference hypothesis.

2) Using “all classes” as a reference hypothesis.
The suggestion that the reference hypothesis H0
can be defined as a combination of “all classes”
has been made several times. While in principle, H0
can be any hypothesis, even this one, it defeats the
purpose of class-specific features. This is because
all the features are needed for discrimination of
one class from all the others (see above item).
Furthermore, the “all class” does not yield to
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mathematical analysis, needed to compute the
J-function.
3) Tail probability errors. A common

misconception is that the denominator PDF in the
J-function, p(z �H0), can be estimated from training
data. This is only true if all possible realizations
of input data will be within the central part of the
distribution and not highly unlikely. This could work,
for example, with low-SNR signals. But such a system
would perform poorly against high-SNR signals. It
may be possible to position the reference hypothesis
“close” to the data sample, then attempt to estimate
the PDF of the features by random trials. Note that
this would need to be re-done for each sample to
be tested. It also must meet the requirements for a
variable reference hypothesis.
4) Segmentation. Segmentation is the practice

of carving up data into fixed-sized segments, then
extracting features from each segment. This is
an important first step in processing. The choice
of segmentation size is often a difficult choice in
traditional classifiers, because it is necessary to choose
the segment size that is “good enough” for all classes.
The class-specific method affords us the luxury of
using different segmentation sizes for each class. This
is because the likelihood comparisons are made on the
raw data, which is always the same. A common error
people make is that because of the different segment
sizes used across different classes, the amount of raw
data varies slightly due to the fact that the input data
size is not divisible by all segment sizes. This can
be a fatal error. It is necessary to only use an input
data record size that can be divisible perfectly by each
considered segment size.
5) Failure to validate analysis. Some form

of absolute validation is necessary before using a
module. In Section VII, a method of validating the
J-function analysis is provided. There is no obvious
way to locate errors except with this approach.

B. Module Design

There are more than one method of module
design. The designer should not give up on using
a good set of features because one module design
approach fails—there may be another that works.
1) Fixed reference hypothesis. In this approach,

a fixed reference hypothesis, such as independent
Gaussian noise of a fixed variance is chosen. Then,
the numerator and denominator densities of the
J-function must be known exactly or approximated
with the saddlepoint approximation [18] to insure
accurate tail values.
2) Floating reference hypothesis. Floating the

reference hypothesis by positioning it “close” to
the data sample to be tested is a means of avoiding
the tails. In general, a reference hypothesis cannot
be made dependent on the data—this violates

the concept of a statistical hypothesis. But under
certain conditions, the dependence of the numerator
and denominator of the J-function on changes in
the reference hypothesis cancel out making the
approach feasible [1]. The reference hypothesis may
be floated as a function of the data as long as the
features are sufficient statistics to distinguish all
the possible hypotheses that may result. Floating
the hypothesis may be a simple as adjusting the
variance of the Gaussian assumption to agree with
the sample variance of the data. Or, it may be as
sophisticated as controlling the noise spectrum of
an autoregressive model to agree with the observed
autocorrelation function. The designer must insure that
the features are sufficient or approximately sufficient
to discriminate between the various reference
hypotheses. For example, any feature set that contains
the sample variance explicitly as a component or
where the sample variance can be inferred from the
features is fully sufficient to discriminate between any
pair of variance hypotheses. Therefore, the variance of
the reference hypothesis can be “floated.”

3) On-the-fly analysis. It is possible to make a
rapid Montecarlo-type analysis of the feature PDFs
under a floating reference hypothesis.1 This is useful
when the PDF of the features defies analysis.

C. NUWC Module Library

The class-specific module is the building block
of a class-specific classifier. It can be a source
of frustration if a classifier designer wishes to
use a feature set and cannot because no analysis
is available. This is why a library of pre-tested
class-specific modules is useful. A central repository
of class-specific modules is being collected at a
web-site at NUWC:

http://www.npt.nuwc.navy.mil/csf/index.html

To date, this collection includes the following feature
transformations:

1) various invertible transformations;
2) spectrogram;
3) arbitrary linear functions of exponential RVs;
4) autocorrelation function (contiguous and

non-contiguous);
5) autoregressive parameters (Reflection

coefficients);
6) cepstrum (including MEL Cepstrum);
7) order statistics of independent RVs;
8) sets of quadratic forms.

New feature modules may be designed using the
analysis tools of CR bound analysis (for maximum
likelihood features) Readers are encouraged to use the
library and submit their own contributed modules.

1The author wishes to thank Mario Fritz for this suggestion.
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VI. EXAMPLES OF FEATURE CHAINS

Examples are necessary to make clear the
important point thus far discussed. Each example
shows how a feature transformation chain can be
analyzed to obtain the correction term for PDF
projection. When the feature transformation occurs
in more than one step, the examples are broken down
into separate modules. For each module, we provide
the following information (all enclosed in boxes for
clarity)

Feature Calculation: The mathematical
expression of the
feature calculation.

H0: A description of the reference hypothesis.

The class-specific correction term (J-function) is given
by

J(x,T,H0) =
p(x �H0)
p(z �H0)

:

We separately provide the numerator and
denominators:

Numerator PDF: The numerator PDF
of the J-function.

Denominator PDF: The denominator PDF
of the J-function.

The simplest kind of feature transformation is an
invertible transformation. While these are not useful
for dimension reduction, they are important for feature
conditioning. For invertible transformations, the
J-function is just the absolute value of the determinant
of the Jacobian matrix of the transformation. Thus

J(x,T) = �det(J)�
where

J=

�
�������

@z1
@x1

@z1
@x2

@z1
@x3


 
 


@z2
@x1

@z2
@x2

@z2
@x3


 
 


...
...

...

�
�������

For invertible transformations, we provide the
complete J-function only:

J-Function (Jacobian): The log of the
determinant of the
Jacobian matrix.

A. Log Transformation

An example of an invertible transformation is the
log function. Consider the transformation

Feature Calculation: zi = log(xi), 1 � i�M:

We have dz=dx= 1=x, thus log J = log(1=x) =
	 log x=	z. For taking the logarithm of a vector of
length M , we have

J-Function (Jacobian): log J =	
M�
i=1

zi:

B. Variance Estimate

A very simple example of a class-specific module
is the sample variance. Let x be a time-series of length
N and let z be the variance estimate

Feature Calculation: z = T(x) =
1
N

N�
n=1

x2i :

Let the reference hypothesis be

H0: Independent zero-mean Gaussian
noise of variance 1.

Then the numerator of the J-function is

Numerator PDF:

log p(x �H0) =	
N

2
log 2¼	 1

2

�
N�
i=1

x2i

�
:

Since z has the Chi-squared distribution with N
degrees of freedom (scaled by 1=N), the denominator
of the J-function is

Denominator PDF:

log p(z �H0) = logN 	 log¡
�
N

2

�
	 N
2
log 2

+
�
N

2
	 1
�
log(Nz)	 Nz

2
:

C. Autocorrelation Function

A very useful feature set in stationary time-series
analysis is the autocorrelation function (ACF). The
ACF coefficient of lag ¿ is an estimate of the mean
or expected value of the product xtxt	¿ , which for
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stationary time-series, is independent of t. The ACF
is the fundamental feature extraction behind many
spectral estimation techniques with varying names
such as linear predictive coding (LPC), autoregressive
(AR) modeling, and reflection coefficients (RC). All
of these methods are related and begin by estimating
the ACF using a variety of methods. The benefit of
AR modeling is that the spectral information can be
boiled down to but a few coefficients which can hold
spectral information with high resolution. The first
P+1 ACF lags (¿ = 0,1, : : : ,P) are required for a Pth
order AR model [21]. These ACF lags can then be
transformed to RCs or AR coefficients using invertible
transformations, thus they are equivalent from a
modeling point of view. A good source of information
on the topic is the book by Kay [21].
It may also be useful to use arbitrary ACF lags,

rather than only the first P+1 lags. This is especially
true when dealing with periodic time-series such
as human voice, where the lag value at the pitch
period is also of interest. Let x= [x1,x2, : : : ,xN] be a
time-series of length N . We define the M-dimensional
feature set z as the arbitrary ACF lags k1,k2, : : : ,kM .
Thus, the feature calculation is

Feature Calculation: z= [rk1 ,rk1 , : : : ,rkM ],

where rk =
1
N

N�
i=1

xix[i+k]N

where the braces [i	 k]N indicates modulo-N. These
are known as the circular ACF estimates because of
the modulo indexing. We choose this form of the
ACF because it simplifies the analysis. A solution
is available for arbitrary forms of the ACF based on
quadratic forms [19], but is more complicated. As
before, let the reference hypothesis be

H0: Independent zero-mean Gaussian
noise of variance 1.

Then, as before, the numerator of the J-function is

Numerator PDF:

log p(x �H0) =	
N

2
log 2¼	 1

2

�
N�
i=1

x2i

�
:

There is no known closed-form expression for the
joint PDF of z under H0, although a cumbersome
but exact expression is available for the normalized
statistics r̃k = rk=r0 (See [18] Section IIB). However,
an approximation based on the saddlepoint
approximation (SPA) [22] that is valid in the tails has

been published. Specifically, in [18], Section IVB,
the SPA for the scaled ACF estimates z̃= 2Nz are
derived. The J-function denominator is thus,

Denominator PDF:

log p(z �H0) =M log(2N) + log p(z̃ �H0)

where p(z̃ �H0) is from [18], Section IVB.

D. Contiguous ACF and Reflection Coefficients

Reflection coefficients (RCs) are an alternate way
of representing the information in an AR model.
The RCs can be more convenient and easier to
statistically model. Reflection coefficients (RCs) may
be calculated from ACF estimates [21], and therefore
we may use the results of Section VIC followed by
a conversion to RCs. However, Section VIC is more
general since it describes an approach that can handle
arbitrary ACF lags; whereas the RCs are computed
from a contiguous set of ACF lags (lags 0 through P).
The use of contiguous ACF samples allows a different
approach to analysis of the ACF features which is
both instructive and useful for comparison purposes.
If we use the circular ACF estimates as before, we
can calculate the ACF samples by first computing
the magnitude-squared DFT, then the inverse DFT. A
third stage is necessary to convert to RCs and a fourth
stage is used for further conditioning. The complete
chain provided below has been found to be extremely
versatile in modeling time-series. By segmenting the
time-series, signals can be converted into sequences of
feature vectors that can be statistically modeled using
the a hidden Markov model (HMM). These feature
sequences can also be converted back into time-series
to validate the fidelity of the representation. As an
additional check of model fidelity, the trained HMM
can be used to generate random feature sequences,
then converted into time-series for listening. Because
of the versatility of CSM, each signal type can be
represented using a particular choice of segment size
and AR model order.

1. Stage 1: Magnitude-Squared DFT
In the first stage, we let y= [y0,y1, : : : ,yN=2] be the

magnitude-squared DFT of x,

Feature Calculation:

yk =

�����
N�
i=1

xi exp
�
	 j2¼(i	1)k

N

������
2

, k = 0,1, : : : ,N=2:
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As before, we let the reference hypothesis be

H0 : Independent zero-mean Gaussian
noise of variance 1.

Also, as before, the numerator of the J-function is

Numerator PDF:

log p(x �H0) =	
N

2
log 2¼	 1

2

�
N�
i=1

x2i

�
:

The DFT bins are independent under H0, but not
identically distributed. DFT bins 0 and N=2 are
real-valued so yk have the Chi-squared distribution
with 1 degree of freedom scaled by N , which we
denote by p0(y):

p0(y) =
1

N
�
2¼

yi
N

	1=2
exp

�
	 yi
2N

�
:

DFT bins 1 through N=2	 1 are complex so yk
have the Chi-squared distribution with 2 degrees of
freedom scaled by N=2, which we denote by p1(y):

p1(y) =
1
N
exp

�
	 yi
N

�
:

The complete denominator PDF is

Denominator PDF:

log p(y �H0) = log p0(y0) +
N=2�
k=1

log p1(yk)

+ log p0(yN=2):

2. Stage 2: Inverse DFT
In the second step, let r= [r0,r1, : : : ,rP] be the first

P+1 ACF lags, which can be computed from 1=N
times the first P+1 samples of the real part of the
inverse DFT of y. This may be written as

rk =
1
N2

N=2�
i=0

²i yi cos
�
2¼ik
N

	
, k = 0,1, : : : ,P

where ²i = 1 for i = 0,N=2, and ²i = 2 for i=
1,2, : : : ,N=2	 1. This may be written in the matrix
form

Feature Calculation: r=C�y

where matrix C is defined accordingly.
Now, for the first time, we use a reference

hypothesis other than independent Gaussian noise.

In fact, we use a floating reference hypothesis—one
that depends upon the data sample. The use of a
floating reference hypothesis and the constraints
on how it may vary are discussed elsewhere
[1]. The floating reference hypothesis is the AR
spectrum corresponding to the ACF r. Using the
Levinson-Durbin recursion [21], we may transform
r into the AR coefficients �a1,a2, : : : ,aP ,¾2�. The
corresponding AR spectrum is written

yrk = ¾
2

�����
P�
k=0

ak exp
�
	 j2¼ik

N

	�����
2

where the superscript “r” is a reminder that the
AR spectrum depends on r. We let our reference
hypothesis, denoted by H0(r), be that the mean of
y equals the AR spectrum yr = [yr0,y

r
1, : : : ,y

r
N=2].

For simplicity, we assume the elements of y are
independent.

H0(r): That y has independent elements
with mean E(y) = yr:

Under H0(r), the elements of y are independent
and Chi-squared with 1 or 2 degrees of freedom with
mean yrk. Bins k = 0,N=2 are distributed according to

p0(y,y
r) =

1

yr
�
2¼
(yi=y

r)	1=2 exp
�
	 yi
2yr

	

while bins 1 through N=2	 1 are exponentially
distributed according to

p1(y,y
r) =

1
yr
exp

�
	 yi
yr

	
:

In summary,

Numerator PDF:

log p(y �H0(r)) = log p0(y0,yr0)+
N=2�
k=1

log p1(yk,y
r
k)

+ log p0(yN=2,y
r
N=2):

We may use the central limit theorem (CLT) to
approximate the PDF of r under H0(r) because the
mean of r under H0(r) is very nearly r itself. Under
H0(r), the elements of y are independent with mean y

r

and diagonal covariance §r
y given by

§r
y(i, i)

¢
=�((yi	 yri )2 �H0(r))

=
�
2(yri )

2, i = 0,N=2

(yri )
2, 1 � i�N=2	 1:

Under H0(r), r has mean

rr
¢
=E(r �H0(r)) =C�yr
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and covariance
§r
r =C

�§r
yC:

log p(r �H0(r)) =	
(P+1)
2

log(2¼)	 1
2 log �det(§r

r )�

	 1
2 (r	 rr)�(§r

r )
	1(r	 rr): (10)

If we we make the approximation rr  r, we obtain

Denominator PDF:

log p(r �H0(r)) =	
(P+1)
2

log(2¼)	 1
2 log �det(§r

r )�:

3. Stage 3: Conversion to RCs
The conversion from ACF to RCs is an invertible

transformation that is characterized by a Jacobian
matrix. The determinant of this matrix is the
J-function of the transformation.

Feature Calculation: r� (Levinson recursion
for reflection coefficients)
� k

where r is the ACF vector, r
¢
=[r0,r1, : : : ,rP], and z is

the vector of reflection coefficients augmented by the
variance (zero-th lag ACF sample),

k
¢
=[r0,k1, : : : ,kP]:

Note that we use r0 and not the AR prediction error
variance ¾20. This transformation is invertible and is
characterized by the Jacobian

J-function (Jacobian):

log J =	P log(r0)+
P	1�
i=1

(P	 i) log(1	 k2i ):

4. Stage 4: Log-Bilinear Transformation
Although the RCs have desirable properties as

features, they are subject to the limit �ki�< 1 which
produces a discontinuity in the PDF. As a result,
the PDF can be difficult to estimate using so-called
non-parametric PDF estimators such as Gaussian
mixtures. To obtain more Gaussian behavior, the
log-bilinear transformation is recommended (thanks
to S. Kay for recommending this).

Feature Calculation: k�i =
log(1	 ki)
log(1+ ki)

,

1 � i� P, r�0 = log(r0):

This transformation is invertible and is characterized
by the Jacobian

J-function (Jacobian):

log J = r�0	
P�
i=1

log
�

2
1	 k2i

�
:

VII. EXPERIMENTAL VALIDATION

A very important question in developing a
class-specific classifier is how to validate the analysis
of a feature transformation. Because the numerator
and denominator PDFs of the J-function are often
evaluated in the far tails, we can never know if these
PDF values are correct by histogram techniques. In
Section VIC and VID (up to stage 2), two methods
are presented for calculating the J-function for ACF
samples. It may be verified that for contiguous ACF
samples, the two approaches produce exactly the
same features. The J-function values produced by
the two methods are very close, but not exactly the
same. Such comparisons are reassuring but are not a
complete test and cannot be made for all problems.
The following approach is a complete end-to-end test
that has proved to be very useful.

Validation of the feature modules amounts to
validating the PDF projection theorem (3). To validate
(3), we design a hypothesis Hv for which we know the
PDF p(x �Hv) exactly and for which we can create
a large amount of synthetic raw data samples. We
convert the synthetic data to features which we use to
obtain the PDF estimate p̂(z �Hv). Using this estimate
in (3), we obtain an estimate pp(x �Hv). To validate
the result, we plot the projected PDF values pp(x �Hv)
on one axis and the exact values p(x �Hv) on the other
axis for each sample of synthetic data. The points
should lie near the y = x line. An example is shown
in Fig. 10 where we tested the chain of four feature
modules in Section VID. The synthetic data used in
the experiment were 100 time-series of independent
Gaussian noise of variance 100 and length 4096.
The features were computed using an AR model
order of 4 with segmentation to 64-sample segments,
thus producing 64 independent feature vectors of
dimension 5 per sample. A Gaussian mixture model
was used to statistically model the features.

VIII. CLASS-SPECIFIC TIME-SERIES CLASSIFIER USING
REFLECTION COEFFICIENTS AND HMM

We can put to use the material thus-far discussed
to arrive at a fully modular, extremely versatile
class-specific classifier. A functional block-diagram
of this classifier is provided in Fig. 11. A given
time-series is processed by each class-model to arrive
at a raw-data log-likelihood for the class. Each block
labeled “RC(P)” computes the reflection coefficients
of order P from the associated time-series segment.
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Fig. 10. Example of validation test results for 4th order autoregressive features (Section VID stages 1–4). Upper graph shows
theoretical log-PDF values on x-axis and PDF projection theorem values on y-axis for 100 synthetic events. Lower graph shows the

errors.

Fig. 11. Block diagram of an HMM and RC-based class-specific classifier. A given time-series is processed by each class-model to
arrive at a raw-data log-likelihood for the class. Each block labeled “RC(P)” computes the Pth order reflection coefficients from the

corresponding time-series segment and is implemented by a series of modules (see text).

The figure shows two class-models employing
different segmentation lengths as well as different
model orders. The log-correction terms of all the
segments are added together and the aggregate
correction term is added to the HMM log-likelihood
(from the forward procedure [23]) to arrive at the
final raw data log-likelihood for the class. The
segmentation sizes and model orders are optimized

for each class individually, eliminating the need to
“compromise.”

Each “RC(P)” block is composed of a series of
modules implementing ACF calculation followed
by conversion to RCs, and ending with feature
conditioning by the log-bilinear transformation. This
may be implemented by the three modules described
in Sections VIC, VID3, and VID4. Alternatively, the
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four modules of Sections VID1, VID2, VID3, and
VID4 will produce virtually identical features and
J-function values. This classifier has the added benefit
that the models may be validated by re-synthesis of
time-series from features (either computed from actual
data or generated at random by the HMM).
It should be stressed that we are not limited to

using RC features and HMM PDF models. As long
as care is taken in computing the correction terms,
any feature set and any statistical model may be
employed. Straight DFT features may be preferable
to RC features for sinusoidal signals. Wavelet features
may be preferable for certain other types of signals. A
particularly good set of features for DFT (or wavelet
processing) is to save the largest M bins and residual
energy. The correction term for this feature set has
been worked out by Nuttall. [24]. Nuttall has also
derived the correction term for features that may be
written as a set of inter-dependent quadratic forms, [25].

IX. CONCLUSION

Previous to the class-specific method, practitioners
in image or signal classification had no guidance from
classical theory in dealing with complex problems.
The incomplete theory forced practitioners to think
of feature extraction from the point of view of class
separability. This flawed paradigm led the practitioner
down the slippery slope of high dimensionality. Now
that the reader has been introduced to the fundamental
concepts of classification theory using class-specific
features, he or she has the tools necessary to attack
classification problems one class at a time, capturing
all the necessary information in the features and
not being forced to “make-do” with features that
are general enough for all classes, but not sufficient
for any class. The examples provided are enough to
build a simple, yet effective class-specific time-series
classifier.
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This tutorial summarizes the motivations, concepts,

techniques, and applications of finite-set statistics (FISST),

a system-level, “top-down” direct generalization of ordinary

single-sensor, single-target engineering statistics to the multisensor,

multitarget realm. FISST provides powerful new conceptual and

computational methods for dealing with multisensor, multitarget,

and multi-evidence data fusion problems. The paper begins with a

broad-brush overview of the basic concepts of FISST. It describes

how conventional single-sensor, single-target formal Bayesian

modeling is carefully extended to general data fusion problems.

We examine a simple example: joint detection and tracking of a

possibly non-existent maneuvering target in heavy clutter. The

tutorial concludes with a commentary on certain criticisms of

FISST.

Manuscript received December 20, 2002; revised June 23, 2003.

Refereeing of this manuscript was handled by P. K. Willett.

Author’s current address: MS U2S26, 3333 Pilot Knob Road, Eagan
MN 55121, E-mail: (ronald.p.mahler@lmco.com).

0018-9251/04/$17.00 c� 2004 IEEE

I. INTRODUCTION

Broadly speaking, data fusion is the process of
directing the right data sources on the right platforms
to the right targets at the right times, with the goal
of detecting, localizing, identifying, and determining
the threat potential of as many targets of interest as
possible, whether these targets be individual entities
such as tanks or jet fighters, or group entities such as
infantry battalions or jet fighter sorties.

Progress in single-sensor, single-target data fusion
(e.g., tracking) has been greatly facilitated by the
existence of a systematic, mathematically rigorous,
and yet practical engineering statistics that has
supported the development of new concepts in the
field. Like all engineering mathematics, engineering
statistics is a tool and not an end in itself. It must have
two qualities:

Trustworthiness: Constructed upon systematic,
reliable mathematical foundations, to which we can
appeal when the going gets rough.

Fire and forget: These foundations can be safely
neglected in most applications, leaving a serviceable
mathematical machinery in their place.

These two qualities are inherently in conflict.
If foundations are so mathematically complex that
they cannot be taken for granted in most engineering
situations, then they are shackles and not foundations.
But if they are so simple that they repeatedly lead us
into engineering blunders, then they are simplistic and
not simple!

The dividing line between the serviceable and the
simplistic is what might be called the “Bar-Shalom
test.” Y. Bar-Shalom is probably the world’s most
well-known and influential researcher in data fusion
applications. Quoting Einstein, he has often said:
“Things should be as simple as possible—but no
simpler!”

This is one of the defining characteristics of the
“Statistics 101” concepts and techniques that most
signal processing engineers learn as undergraduates:
(1) random vectors, (2) probability-mass and
probability-density functions, (3) differential and
integral calculus, (4) statistical moments such as
expected value and covariance, (5) optimal state
estimators, (6) signal and signature modeling, and
(7) optimal signal-processing filters such as the
Kalman filter, etc.

These concepts and techniques are central
to a particular R&D philosophy about how data
fusion algorithms should be devised: formal
Bayesian statistical modeling. Algorithms can be
always cobbled together using catch-as-catch-can
techniques—for example, by immediately discretizing
a problem and applying simple, brute force
computational methods. However, algorithm behavior
may be difficult to diagnose because of hidden
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assumptions and ad hoc design choices. Also, brute
force approximation often leads to computational
intractability, numerical instability, poor convergence,
and other problems. In formal statistical modeling,
one instead begins with a careful Bayes-statistical
specification (a model) of the problem. Then, from
it, one derives a mathematically optimal solution
and theoretically principled approximations of
this solution. Algorithm behavior is usually more
explicable because assumptions and important design
decisions in both the model and the approximations
have been carefully parsed into a systematic,
disciplined chain of reasoning.
Given the importance of this engineering statistics

in the single-sensor, single-target realm, one might
have expected that multisensor, multitarget data
fusion would already rest upon a similarly systematic,
rigorous, and yet practical statistical foundation.
Surprisingly, until recently this has not been the case.
The major reason is that multisensor, multitarget
systems introduce a major complication absent from
single-sensor, single-target problems. Such systems
are comprised of randomly varying numbers of
randomly varying objects of various kinds: randomly
varying collections of targets, randomly varying
collections of sensors and sensor-carrying platforms,
and randomly varying observation-scans collected by
those sensors. A rigorous mathematical foundation
for stochastic multi-object problems—point process
theory [5, 30]—has been in existence for decades.
Unfortunately, this theory has traditionally been
formulated with the requirements of mathematicians
rather than engineers in mind.
In 1994 we introduced an “engineering friendly”

version of point process theory called finite-set
statistics (FISST) [7, 15, 18]. The purpose of this
paper is to provide a high-level overview of FISST
that requires minimal familiarity with concepts of
probability. FISST is engineering-friendly in that
it is geometric (i.e., treats multitarget systems as
visualizable images); and directly generalizes the
Bayes “Statistics 101” formalism that most signal
processing engineers already understand—including
formal Bayes-statistical modeling methods.
However, these methods do not generalize in

a straightforward manner [15]. The following are
examples of how multisensor-multitarget statistics
differs from single-sensor, single-target statistics.
The standard Bayes-optimal state estimators are not
defined in general, and neither are such familiar
concepts as expected value, least-squares optimization,
and Shannon entropy. Other concepts, such as
miss distance, require major reworking. Also, no
explicit, general, and systematic techniques exist for
modeling multisensor-multitarget problems and then
transforming these models into Bayesian form. FISST
specifically addresses such gaps.

FISST results in a systematic Bayesian unification
of detection, classification, tracking, decision-making,
sensor management, group-target processing,
expert-systems theory, and performance evaluation
in multi-platform, multi-source, multi-evidence,
multi-target, multi-group problems. Highlights are:

1) multisource-multitarget information theory
[7], resulting in a scientific basis for performance
evaluation of multisensor-multitarget algorithms [33];

2) a unified, probabilistic foundation for many
aspects of expert systems theory (fuzzy logic,
the Dempster-Shafer theory, rule-based evidence,
Bayesian statistics) [15, 18, 20, 29];

3) robust target identification, when underlying
sources or sensors are imperfectly understood
[8, 20, 29];

4) simultaneous optimal estimation of the
numbers, identities, and geokinematics of targets
[7, 15, 18];

5) a systematic approach for detection, tracking,
and ID of multiple group targets [13];

6) a unified, control-theoretic approach to
multisensor-multitarget sensor management
[14, 16, 17, 19];

7) potentially powerful new approximation
techniques such as multitarget statistical analogs
of constant-gain Kalman filters [13, 21] or MHT
approximations for sensor management [16, 17, 19].

FISST has attracted great interest since 1994.
FISST-based algorithms are being or have been
investigated under R&D contracts from U.S.
Department of Defense agencies such as the Army
Research Office, the Air Force Office of Scientific
Research, SPAWAR Systems Center, the Missile
Defense Agency, the Army Missile Research and
Defense Command, and three different sites of the Air
Force Research Laboratory. The Australian Defence
Science and Technology Organisation is funding
several activities in this area, and several research
teams around the world are investigating FISST
methods.

Applications at the applied-R&D level include:
1) scientific performance evaluation [33];
2) robust automatic target recognition using

Synthetic Aperture Radar (SAR) data [8];
3) adaptive sensor and platform management

[16, 17, 19];
4) multi-target detection and tracking in

high-density environments [21];
5) robust passive-acoustic classification; and more.
We begin by providing a broad-brush overview

of finite-set statistics. In two succeeding sections
we summarize the specifics of the approach. A
simple illustration—tracking a possibly non-existent
maneuvering target in heavy clutter—is described
and we conclude with comments regarding certain
criticisms of FISST.
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Fig. 1. Basic concept of finite-set statistics.
Multisensor-multitarget problems are mathematically transformed
into single-sensor, single-target problems by bundling all sensors

into a single “meta-sensor” and all targets into a single
“meta-target.”

Fig. 2. Common representation of diverse data. Data of diverse
types—radar, natural-language statements, features, rules from

rulebases—are transformed into a common framework: the random
subset.

II. FINITE-SET STATISTICS (FISST) IN A NUTSHELL

The basic concepts of FISST are summarized in
Figs. 1–5. At left in Fig. 1, one or more sensors or
other data sources of arbitrary types collect multiple
observations from a group of targets. None of these
targets have necessarily been detected yet.
The basic idea underlying FISST is to transform

this multisource-multitarget problem into a
mathematically equivalent single-sensor, single-target
problem. All of the sensors are mathematically
bundled into a single “meta-sensor” that retains all
of the characteristics of the original sensors: their
probabilities of detection, measurement models, and
clutter or false alarm models. The targets are likewise
bundled into a single “meta-target” that retains all of
the characteristics of the individual targets.
A major barrier to data fusion has been

the disparate forms that data can have. Data
supplied by tracking radars can be accurately
described in statistical form. But it is unclear how
English-language evidence might be represented
mathematically. Features (such as those transmitted
on datalink) and rules from knowledge-bases exhibit
varying degrees of ambiguity. As shown in Fig. 2,
FISST deals with all such data by transforming it
into a common mathematical framework—a random
subset—that makes common processing possible.
Fig. 3 illustrates a specific, intuitive example of

this. In the natural-language observation ‘Gustav is

Fig. 3. Probabilistic representation of English language statement.
Ambiguous observation ‘NEAR the tower’ is modeled as a series
of ellipses surrounding the tower, each of which has a certain
probability of being the correct interpretation of the concept

‘NEAR’.

Fig. 4. Multisensor-multitarget statistics. Single-sensor,
single-target statistics is directly generalized to

multisensor-multitarget statistics. The “almost-parallel worlds
principle” permits direct generalization of many single-sensor,

single-target solution and approximation techniques.

NEAR the tower’, the ambiguous concept ‘NEAR’ is
modeled as a series of nested ellipses surrounding the
tower. Each ellipse is assigned a subjective probability
that it is the correct interpretation of ‘NEAR’. The
resulting randomly varying ellipse (a random subset
of the plane) is a probabilistic model of ‘NEAR’.
One novel consequence of this approach is that many
familiar expert-system methodologies (fuzzy logic, the
Dempster-Shafer theory, rule-based evidence) can be
unified under a single probabilistic umbrella. (This
aspect of FISST is heavily indebted to random set
methods for data fusion pioneered by I. R. Goodman
and H. T. Nguyen [7].)

Fig. 4 illustrates the mathematical core of
finite-set statistics. Single-sensor observations
and single-target states are generalized to
multisensor-multitarget observation-sets and
multitarget state-sets. The integral and derivative
of undergraduate calculus are generalized to
multisensor-multitarget “set derivatives” and
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Fig. 5. Unified Bayesian multisource-multitarget data fusion.
General data fusion problem, including sensor management, can
be formulated as a system-level tracking-and-control problem

involving arbitrary forms of evidence.

“set integrals.” Single-sensor, single-target
probability-mass functions and likelihood functions
are generalized to multisensor-multitarget belief-mass
functions and likelihood functions. And so on.
The “almost-parallel worlds principle” states that
multisensor-multitarget problems can be attacked
through direct generalization of solution techniques
for the analogous single-sensor, single-target
problems. Using these techniques, one can devise
principled new approximation strategies for
applications such as cluster tracking, group target
tracking, and sensor management [12, 16, 17, 19, 21].
Fig. 5 illustrates a consequence of this system-level

perspective. The detection, tracking, and identification
of multiple targets using multiple evidence types
provided by multiple re-allocatable sources can
be thought of as being, in effect, no different than
a missile-tracking camera problem. Sensors must
be redirected to maximize knowledge about the
multitarget system.

III. SINGLE-SENSOR, SINGLE-TARGET STATISTICS

Bayes statistics has become the most widely
accepted engineering mathematics for single-sensor,
single-target target detection, tracking, identification,
and data fusion applications. This is due in large part
to the fact that it leads to provably optimal algorithms
within an (often deceptively) simple mathematical
framework. This simplicity is a great strength—but
also a great weakness.
In recent years, the temptation has arisen of trying

to appear deeply authoritative about any engineering
R&D problem—and at the same time avoid careful
thinking—by citing Bayes’ rule, declaring victory,
and then portraying complacency towards unexpected
difficulties as a sign of intellectual superiority.
However, in the words of the statisticians J. C.
Naylor and A. F. M. Smith, “The implementation
of Bayesian inference procedures can be made to
appear deceptively simple” [25, p. 214]—and indeed
has been. Also often forgotten is the fact that the

optimality and the simplicity of Bayesian methods
can be taken for granted only in standard applications
addressed by standard textbooks.

In this section we summarize the elements of
formal Bayesian statistical modeling: target states,
sensor observations, the Bayes rule data-update,
likelihood functions, motion updates, and Markov
transition probabilities. We describe some basic
modeling issues associated with real-time Bayesian
approaches, and how they are resolved.

Target States and Sensor Measurements. Suppose
that a single sensor collects data from a single,
moving target. Thinking like a physicist, we
first precisely model the physical “states” that
our “particle”—the target—could be in. The
state-model is typically a vector, such as x=
(x,y,z,vx,vy,vz,ax,ay,az,c), that captures pertinent
target descriptors such as position x,y,z, velocity
vx,vy,vz , acceleration ax,ay,az, and target identity/label
c. Second, we precisely model the observations the
sensor collects. For example, the sensor may observe
only target position in spherical coordinates, in which
case observation-models will be vectors such as
z= (r,μ,Á).

Bayesian Approach to Solving Single-Sensor,
Single-Target Problems. The primary question to be
answered is this: What state x did the target have to be
in to best explain the generation of the observation z,
given everything else already known about the target?
In Bayes statistics, one does not say definitively that
any particular x is the correct state, either before or
after the collection of z. Instead, we can say only that
before and after the collection there were probabilities
p+(x) and p(x � z), respectively, that any given x is
the correct state. Here p+(x) is the prior probability
of x, which encapsulates all of our knowledge about
each x before the collection. The posterior probability
of x, p(x � z), encapsulates all of our knowledge
afterwards. The sums

�
p+(x)dx and

�
p(x � z)dx of

all the probabilities over all the states must equal one.
This is because probability is a zero-sum game: some
states cannot be highly probable unless all other states
are highly improbable.

Using Bayes’ Rule to Incorporate New Single-Sensor
Data. To get the posterior probability we must
“adjust” the values of the prior probability, increasing
p+(x) if z favors x and decreasing p+(x) if otherwise.
Stated differently, for any z we must multiply p+(x)
by a factor Lz(x) that is large if z favors x and small
if otherwise. The value Lz(x) is called the likelihood
that a target with state x generated the observation
z. Posterior probability p(x � z) must sum to one but
in general Lz(x)p+(x) does not. So, we must divide
Lz(x)p+(x) by the sum K =

�
Lz(x)p+(x)dx. The

resulting deceptively simple-looking formula

p(x � z) = K�1Lz(x)p+(x) (1)

for the posterior probability is called Bayes’ rule.

56 IEEE A&E SYSTEMS MAGAZINE VOL. 19, NO. 1 JANUARY 2004 PART 2: TUTORIALS



Estimating the Target State. The posterior
probability p(x � z) encapsulates everything that we
know about the target state, based on current evidence.
It is not useful to us as engineers unless we have a
“mathematical can opener” that allows us to extract
the information that we really want: the position,
velocity, identity, etc. of the target. One method is
to choose the most probable state—i.e., find the
x that makes p(x � z) largest. This procedure is an
example of a Bayes-optimal state estimator—i.e., one
that minimizes the central objective function of the
Bayesian approach, the Bayes risk [31, pp. 54–59].
Engineering Issues, I. As engineers, we should

be very troubled at this point. We have solved
our problem by conjuring up a seemingly magical
quantity, the likelihood Lz(x). Theoretically speaking,
Lz(x) = p(z � x) is a so-called “conditional probability.”
But this bare fact merely transforms magic into
equally unhelpful “mathe-magic.” The real questions
that must be answered are these: What explicit,
general procedure might allow us to derive a concrete
formula for Lz(x) in any specific situation? How do
we know that this formula is “true”—i.e., faithfully
reflects the actual behavior of the sensor? If the
likelihood is not true, then any claim of “optimality”
is hollow because it applies only to whatever sensor
is actually modeled by the incorrect likelihood. In
particular, if Lz(x) is too imperfectly modeled then
an algorithm will “waste” data trying (and perhaps
failing) to overcome the mismatch with reality.
More generally, citing Bayes’ rule and

declaring victory only passes the buck to the
data simulation community and dodges the real
algorithm-design issue: what to do when Lz(x) cannot
be well-characterized. For example, it is unclear that
sufficiently high-fidelity likelihoods Lz(x) can ever
be implemented in real time for certain data sources
such as High Range Resolution Radar (HRRR) and
Synthetic Aperture Radar (SAR). In the case of other
information sources—English language statements,
rules, attributes—it is unclear how to mathematically
represent them as “data” z, let alone how one might
construct Lz(x) given that fact.
Another difficulty arises from the fact that a

state estimator must be selected with care. If it
has unrecognized inefficiencies, then data will
be unnecessarily “wasted” in trying to overcome
them—though not necessarily with success. We do
not have a Bayes-optimal solution unless we have a
Bayes-optimal state estimator. It should have other
desirable properties, e.g. rapid and stable convergence
to the actual target state.
Sensor Measurement Models. How do we

construct the true likelihood Lz(x)? Usual engineering
practice is to begin with an equation such as z=
(r,μ,Á) = h(x), which states that the observation
z= h(x) will be collected if the target has state x. The
function h(x) captures the fact that the sensor usually

cannot observe the entire target state x but rather only
some incomplete and/or transformed view of it. In
addition, because of internal noise the sensor will
actually collect not z but some random perturbation
z+¢z of z. This leads to a measurement model

z= h(x) +¢z:

Since ¢z is random there is a probability p¢z(w) that
¢z will take any given value w. Using undergraduate
calculus, one can show that the true likelihood is:

Lz(x) = p¢z(z� h(x)): (2)

In practice, this formula can be looked up in a
textbook and so we need never actually bother with
its formal derivation. But, as we shall see, in the
multitarget case no textbook yet exists that allows us
such an easy escape from mathematics and careful
thinking.

Accounting for Interim Target Motion. What if
the target is moving? Let p0(x) be the probability
that x is the correct target state, based on all evidence
collected up to the previous data-collection time tk�1.
If the target were not in motion, p+(x) would equal
p0(x). Because the target is moving we cannot actually
know p+(x), so how do we get it? We assume that
we know the probability p+(x � x0) that the target will
move to state x from state x0—the Markov transition
probability. Since the target had a probability p0(x0)
of being in state x0 previously, p+(x � x0)p0(x0) is
the probability that the new state will be x given that
possibility. Summing over all prior states x0, we get
the total probability that the target will be in state x at
the next data collection:

p+(x) =
�
p+(x � x0)p0(x0)dx0: (3)

Engineering Issues, II. The more accurately that
p+(x � x0) models target motion, the more effectively
Bayes’ rule will do its job. Otherwise, a certain
amount of data must be expended in overcoming poor
motion-model selection. But where does p+(x � x0)
come from? How do we ensure that it faithfully
reflects the motion of the target if we are lucky
enough to have modeled it correctly? Once again,
we appear to have sidestepped difficult issues by
conjuring up a magical quantity p+(x � x0). And
once again, the fact that p+(x � x0) is a conditional
probability is unhelpful “mathe-magic.”

Target Motion Models. The usual strategy for
determining p+(x � x0) is to first make a guess about
the target’s motion between data-collection times:
straight-line motion (dead reckoning), 2 g horizontal
turn, etc. This guess is expressed as an equation
x= g(x0) which states that the target will have state
x at the new collection time if it had state x0 at the
old one. Since this equation is only a guess, the actual
x will usually be not x but rather some perturbation
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x+¢x of x. Assuming that ¢x is a random vector, we
get a motion model:

x= g(x0) +¢x:

The procedure for constructing the true Markov
transition probability from such a model is exactly
analogous to that for constructing a true likelihood
function from a sensor measurement model. Let
p¢x(y) be the probability that the perturbation ¢x will
have the value y. Then

p+(x � x0) = p¢x(x� g(x0)): (4)

Again, in practice this formula can just be looked up
in a textbook. And also again, in the multitarget case
no textbook yet exists that offers us such a painless
exit.
Generalized Kalman Filtering: Bayes Recursive

Filter. Suppose that the sensor collects a
time-sequence z1, : : : ,zk of observations from
the target. Let pk�k(x) = p(x � zk) be the posterior
probability at the time of the collection of observation
zk. Each time we collect a new observation zk+1,
use (2) to account for interim target motion. Apply
(1) to incorporate the new observation, and then
use a Bayes-optimal state estimator to extract from
pk+1�k+1(x) the information that we want. Repeating
this process recursively we end up with the foundation
for single-sensor, single-target problems, the Bayes
nonlinear filter [3, pp. 373–377].
The familiar Kalman filter is a special case of this

general filter. It results when we assume that, for any
data collection time, h in (1) and g in (2) are matrices,
and that the perturbations ¢z and ¢x are independent
Gaussian white noise.
Engineering Issues, III. As we shall see in our

simple example, the Bayes filter is a very powerful
tool for problems in which conventional approaches,
such as the extended Kalman filter (EKF), experience
difficulty. But it is also much more computationally
demanding than the EKF and related techniques.
Consequently, more powerful real-time approximate
methods have been the subject of extensive recent
research.
Caution is in order here because in some of

these efforts simple, inherently intractable brute
force techniques have been successively hyped and
abandoned in favor of equally untenable techniques
that are hyped in their own turn. In reality, naïve ad
hoc approximations result in an algorithm “wasting”
a certain amount of data overcoming—or failing to
overcome—accumulation of approximation error,
numerical instability, etc. Credible approaches
typically rely on principled approximations based on
sophisticated mathematical techniques.
An approximate Bayes filter should rapidly and

stably converge to the correct answer regardless of

the data collected. So-called particle-system filters
[6] appear promising in this regard for those niche
applications, such as low-SNR tracking [2], that
defy conventional approaches. But the computational
tractability of even these filters is being promoted with
excessive enthusiasm by some.

IV. MULTISENSOR-MULTITARGET STATISTICS

Finite-set statistics directly generalizes the
single-sensor, single-target statistics of previous
sections into a serviceable engineering statistics for
multisensor-multitarget problems. In this section we
introduce the basic elements of multisensor-multitarget
Bayes statistics: multitarget state-sets, multisensor
observation-sets, multisensor-multitarget likelihoods,
multitarget Markov transition probabilities,
and so on. And we show how FISST directly
generalizes formal Bayesian modeling methods to the
multisensor-multitarget realm.

Multitarget States and Multisensor-Multitarget
Observations. Any single-target system is completely
described by its state-vector x. So, if each state-vector
has the form x= (x,y,z,vx,vy,vz,ax,ay ,az,c) then
exactly ten parameters (nine real numbers and one
discrete value c) are required to specify any state of
the target exactly. A multitarget system is considerably
more complicated. Its complete description requires
a unified state representation: a finite set of the form
X = �x1, : : : ,xn� where n is the number of targets and
x1, : : : ,xn are the state vectors of the individual targets.
This description must include the possibility n= 0
—i.e., no target at all is present, in which case we
write X =Ø. Such a unified representation accounts
for the fact that n is variable and that targets have no
physically inherent order. Thus �x1,x2�= �x2,x1�
is a single unified state-model of two targets with
state-vectors x1,x2. (Physical states should not have
redundant state-models: for example, the vectors
(x1,x2) and (x2,x1) model two distinct non-physical
states, whereas �x1,x2� does not.)

So, if each single-target state vector has ten
parameters, 1+ 10+20 = 31 parameters are required
to describe a system with up to two targets; 1+10+
20+30 = 61 parameters are required for a system
with up to three targets; and so on.

Suppose now that our multitarget system is
observed by s sensors, each of which may collect a
single datum from each target. In general, any given
sensor may not actually “see” any given target during
any given data collection. Indeed, it is possible that
no sensor will “see” any targets at all. So, if there are
n targets present then the sensors could collect a set
of observations that contains anywhere from 0 to s � n
observations. Worse, one or more of the sensors may
collect false observations (false alarms). So in general,
the total observation collected by many sensors from
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many targets is some finite but arbitrarily large set Z
of ordinary observations.
Bayesian Approach to Solving Multisensor,

Multitarget Problems. The primary question that
must be answered is this: Given everything previously
known about the targets, what number had to be
present, and what states did they have to have, to
explain the fact that we collected the multisensor
observation-set Z? As before, we can say only
that before and after the collection of Z there is,
respectively, a multitarget prior probability p+(X)
and a multitarget posterior probability p(X � Z)
that any given X is the correct state-set. The sum�
p+(X)±X or

�
p(X � Z)±X of all the probabilities

over all the multitarget states X must equal one.
This requirement introduces a new complication: the
indicated integrals—called set integrals—must sum
over not only all possible target states but also over
all possible numbers of targets. A more subtle issue is
this: in a careful Bayesian formulation, p(X � Z) and
p+(X) must be single functions defined on the unified
multitarget state X. It is not correct to partition them
by target number into a family of functions such as
p+(Ø),p+(x1),p+(x1,x2), : : :.
Using Bayes’ Rule to Incorporate New Multisensor

Data. We construct the multitarget posterior
probability p(X � Z) from the multitarget prior
probability p+(X) as before. Multiply p+(X)
by a factor LZ (X)—the multisensor-multitarget
likelihood—that is large if the multisensor data-scan
Z favors the multitarget state-set X and is small
otherwise. The multisensor-multitarget version of
Bayes’ rule is:

p(X � Z) = K�1LZ (X)p+(X) (5)

where K =
�
LZ (X)p+(X)±X and where the integral is

a set integral that sums over all possible numbers of
targets.
Engineering Issues, IV. As engineers we should

be even more troubled than before because the
quantity LZ (X) is even more mathe-magical than
before. The hard questions are unchanged: What
general, explicit procedures allow us to derive
concrete formulas for LZ(X)? How do we ensure
that these formulas are true—i.e., faithfully reflect
the behaviors of the actual sensors? How do we
know that they are not ad hoc contrivances or not
erroneously constructed? If we shirk such issues we
fail to grasp that there is a problem—any boast of
“optimality” is hollow if LZ (X) models the wrong
sensors. Alternatively, we could—as some have indeed
done—play a shell game: purport that the likelihood
is the correct one and stonewall those who want to see
proof.
An unexpected difficulty arises when we try

to extract the information we really want from
the multitarget posterior probability p(X � Z): the

number, positions, velocities, and types of the targets.
Unfortunately, the naïve generalizations of the
standard single-target Bayes-optimal estimators do not
exist in general [15, pp. 40–42].

For example, consider the naïve generalization of
the single-target Bayes-optimal estimator described
earlier: choose the X that makes p(X � Z) largest.
To keep things simple, suppose that targets are in
the 1-D interval [0,2] and distance is measured in
meters. Assume that p(X � Z) has the following simple
form: p(X � Z) = 0:5 if X =Ø, p(X � Z) = 0:25 m�1
for any X = �x�, and p(X � Z) = 0 otherwise. That
is: according to current evidence, there is a 50-50
chance that no target exists and, if otherwise, it is a
single target that is equally likely to be anywhere in
[0,2]. Since p(X � Z) has its largest value at X =Ø,
the naïve estimator leads us to the conclusion that no
target is present since 0:5> 0:25. However, change
units of measurement from meters to kilometers. Then
p(X � Z) = 250 km�1 if X = �x� and we now conclude
that a target is present! The paradox arises because the
naïve estimator prescribes an impossible procedure:
comparing a unitless quantity p(X � Z) (when X =Ø)
to a quantity p(X � Z) with units (when X = �x�).

Consequently, new estimators must be devised
and shown to be Bayes-optimal, convergent, etc. [15,
pp. 42–44]. One novel feature should be pointed out.
These new estimators optimally unify into a single
procedure two conflicting processes that are normally
accomplished separately: target detection (determining
whether or not targets exist and to what number) and
target estimation (determining the states of the targets,
if they exist).

Modeling the Multisensor Suite in a Multitarget
Scenario. Finite-set statistics provides explicit,
general, systematic tools for constructing LZ (X). A
detailed discussion can be found in [15, pp. 33–34].
In analogy with the single-sensor, single-target case,
we begin with a multisensor-multitarget measurement
model [15, pp. 17–20]. For a single sensor it has the
form

all measurements
Z =

target-generated
measurements
h1(X) �

non-target generated
measurements
¢Z1 (6)

Here, h1(X) models observations directly generated
by targets, but taking missed detections into
account; whereas ¢Z1 models observations that
are not target-generated (e.g., false alarms, clutter,
Electronic Countermeasures, etc). The symbol ‘�’
indicates merely that the set Z of all observations
consists of both target-generated observations and
non-target-generated observations.

Given a measurement model we must construct
the true likelihood function. This is accomplished
using the FISST multitarget integral and differential
calculus—specifically, the inverse operation of the
set integral known as the set derivative. This calculus
strongly resembles ordinary undergraduate differential
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and integral calculus, including the existence of
“turn-the-crank” rules. A detailed discussion can be
found in [15, pp. 27–32].
Accounting for Interim Multitarget Motion. In the

multitarget case one must account not only for the fact
that targets are moving, but also for the fact that their
number can change. Targets enter or leave the scene,
some are destroyed. Others—like missiles—spawn
new targets. Imitating the single-sensor, single-target
case, let p0(X) be the multitarget posterior probability
at the previous data-collection time tk�1. We assume
that we know the multitarget Markov transition
probability p+(X � X0) that the targets will have
state-set X if they originally had state-set X0. The total
probability that the targets will have state-set X at the
next time-instant tk is

p+(X) =
�
p+(X � X0)p0(X0)±X0: (7)

Because one must account for possible changes in
target number, the indicated integral is a set integral.
Engineering Issues, V. Where does the

mathe-magical quantity p+(X � X0) come from?
How do we ensure that it faithfully reflects the
motions of the targets—including target appearances
and disappearances—if we happen to have
accurate information about such things? The naïve
choice—p+(y1, : : : ,yn � x1, : : : ,xn) = p+(y1 � x1) � � �
p+(yn � xn)—presumes that no targets appear or
disappear and that target motions are independent.
But multitarget filters based on such presumptions
may perform poorly against dynamic multitarget
environments, for the same reason that single-target
trackers that assume straight-line motion may perform
poorly against maneuvering targets.
Multitarget Motion Models. Finite-set statistics

allows us to construct the true p+(X � X0) by
generalizing usual engineering practice. We first
specify a multitarget motion model [15, pp. 21–23]:

all targets
X =

pre-existing targets
(including target
disappearance)
g(X0) �

newly
appearing
targets
¢X (8)

Here, g(X0) describes the current states of all targets
that previously existed, but taking into account the
probability that any given target may disappear. Also,
¢X describes the generation of new targets in the
scene. The symbol ‘�’ indicates that the total set of
targets consists of both persisting targets and newly
appearing ones.
The multitarget Markov transition probability

p+(X � X0) can be constructed from the
multitarget motion model in the same way that
the multisensor-multitarget likelihood function
is constructed from the multisensor-multitarget
measurement model—that is, via the set derivative
[15, pp. 35–36].

Multisensor-Multitarget Bayes Filter. Suppose
that the sensors collect a time-sequence Z1, : : : ,Zk
of observation-sets from the targets. Let pk�k(X) =
p(X � Zk) be the posterior probability at the time
of the collection of observation-set Zk. Each time
that we collect a new observation Zk+1, use (7) to
account for interim multitarget motion, apply (5) to
incorporate the new observations collected by the
sensors, and then use a Bayes-optimal multitarget
state estimator to extract from pk+1�k+1(X) the
information we want: target number, target position,
etc. Recursively repeating this process results in the
multisensor-multitarget Bayes nonlinear filter—the
foundation for multisensor-multitarget applications.

Engineering Issues, VI. The multisensor-
multitarget Bayes filter is far more computationally
challenging than its single-sensor, single-target special
case and so even more powerful approximation
strategies are required. Caution is again called for
because, once again, simple brute force techniques
have been successively hyped as “powerful and robust
computational methods,” only to be quietly abandoned
in turn. Multitarget particle-system techniques appear
promising [2, 9] but will likely be computationally
tractable only for a handful of targets in those tracking
environments where they are appropriate—i.e., where
conventional multitarget tracking methods fail. Using
FISST techniques, we have derived alternative,
lower-fidelity approximation filtering strategies based
on the concept of a multitarget first-order moment.
Roughly speaking, such approaches are multitarget
analogs of alpha-beta-gamma filters [13, 21].

A Short History of Bayes Multitarget Filtering.
The general Bayes multitarget filter is a relatively
new concept. The earliest research appears to be the
sophisticated “Jump Diffusion” approach of Miller,
Srivastava, Lanterman, et al. [11]. As Lanterman has
noted, Jump Diffusion and FISST are complementary
efforts and the former “: : :may provide a way to
exploit the complicated multitarget posteriors arising
from FISST formulations” [10]. Portenko et al.
have used branching-process concepts to model
target appearance and disappearance [26]. Kastella’s
“JMP [joint multitarget probabilities], and the
conceptual apparatus surrounding it, are elements
of: : :finite-set statistics (FISST)” [23, p. 27]. The
“likelihood function approach” of Stone et al. has
fundamental limitations [15, pp. 42, 91–93]. Challa
et al. have shown that the IPDA tracking approach
[24] arises directly from the FISST formal modeling
methodology [4] and have established connections
with its multitarget extension, JIPDA [22]. FISST
techniques are being investigated and applied by
Sidenbladh et al. [27, 28] and Vo, Doucet et al.
[32].
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Fig. 6. Simple 1-D example. Recursive Bayes filter must detect
and track a target moving around a 1-D racetrack, using a

non-Gaussian sensor whose observations are corrupted by missed
detections and false alarms.

V. A SIMPLE EXAMPLE

We illustrate some of the concepts described in
this article using the simplest case of Bayes filtering
with unknown target number: when target number
can be zero or one. (More complex examples are
too complicated to describe here but can be found
elsewhere [21, 32].) The problem is depicted in Fig.
6. A particle moves around a circular “racetrack”
of length one. Its motion is uniform but dithered
by Brownian-motion perturbations. Its state is (x,v),
where x is position and v is velocity. At mid-scenario
(the time of the 250th observation-collection), the
target abruptly reverses direction.
The target is interrogated by a position-observing

sensor whose likelihood function is a non-Gaussian
“witches hat” function (see Fig. 6). During each scan,
the sensor collects an observation from the target 93%
of the time, as well as an average of 40 false alarms.
The false alarms are uniformly distributed spatially
over the racetrack, and are Poisson-distributed in time.

Fig. 7. Input data to recursive Bayes filter. Horizontal axis is time (observation-number) and vertical axis is target position on
racetrack. Average of 40 false alarms per scan make observations of target’s position nearly invisible to the human eye.

Target number is assumed constant but unknown,
so that the unified target state has the form X =Ø or
X = �(x,v)�. A measurement model is constructed
from this information and the true likelihood
function f(Z � X) constructed from it using FISST
techniques. The assumed motion model for the target
is dead-reckoning: g(x,v) = (x+¢t � v,v). Fig. 7 shows
a time-sequence of observations. The horizontal axis
is observation number and the vertical axis is position
on the racetrack. The target-generated observations are
essentially invisible to the human eye. Nevertheless,
the Bayes filter must determine if a target is present,
find it, and then track it. (It is not provided with an
estimate of initial target position, or any indication
that the target actually exists.) After the abrupt
maneuver at mid-scenario, the filter must re-acquire
and re-lock the target. The filter is therefore a special
case of the IPDA filter [4, 24] mentioned earlier.

Fig. 8 shows the target trajectory (solid line)
and position estimates produced by the Bayes
filter (dots). The filter finds and locks onto the
target after about twenty scans, though becoming
momentarily confused. After mid-scenario, about
twenty observations are required before the filter
detects the abrupt maneuver and another twenty
before it re-acquires and re-locks. (The delays arise
from the dead-reckoning motion model.)

The computational technique used in this particular
example is a “spectral compression” filter of our
devising that, like particle-system filters, has certain
guaranteed-convergence properties. It has been
described, briefly, only once in the open literature
[1, pp. 212–213]. This is because, mindful of the
rather blatant overselling prevalent in certain quarters,
we wanted to first compare it to particle-system
and other computational filters implemented by
collaborators under our funding [2]. We have since
found that particle-system filters are faster.
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Fig. 8. Output of recursive Bayes filter. Solid line is the target trajectory while dots are the Bayes filter’s estimates of target position.
The filter successfully finds and tracks the target, and reacquires it after the sudden maneuver at mid-scenario.

VI. CRITICISMS OF FISST

A handful of partisans have claimed that a
so-called “plain-vanilla Bayesian approach” suffices
as down-to-earth, general “first principles” for Bayes
multitarget filtering. Ergo, FISST is unnecessary
or worse. However, our guide here should be the
“Bar-Shalom test” cited earlier: “first principles” that
lead to repeated blunders are simplistic, not simple.
The “plain-vanilla Bayesian approach” is

so heedlessly formulated that it is not even
Bayesian—and moreover, disparages random set
concepts even while unwittingly assuming them!
For example, one such partisan has: 1) boasted that
his “plain-vanilla” approach addresses multitarget
Bayes filtering with all necessary rigor and generality
while being “straightforward”; 2) asserted that,
therefore, FISST is pointless “obfuscation”; 3)
subsequently introduced a complicated ur-theory for
Bayes multitarget filtering; 4) failed to notice that this
should be unnecessary since—as per his boast—the
“plain-vanilla” approach already covers all of the
bases; and 5) failed to comprehend that his ur-theory
just unwittingly re-invents basic random set concepts
in highly “obfuscated” notation! How can this be
said to meet minimal standards of logic, let alone
credibility?
Also, note the gamed yardsticks that are

being applied. Anything more complicated than
“plain-vanilla” is “obfuscation”—except when a
“plain-vanilla” partisan is the obfuscator! Likewise:
If FISST is illustrated using familiar observation
models (e.g., post-detection reports), this proves
that FISST is not “general.” But explicit, general,
rigorous methods for observation models (and many
other things) prove only that FISST is not “simple”!
Whereas the “plain-vanilla” approach is simple

because it has no such methods—but yet, magically, is
elastically all-subsuming! Similarly: A partisan avers
that his approach addresses “the problem of search,
track and identification, with the confounding issue
that target count is unknown and must be estimated
too”—whereas FISST addresses something else
entirely: unified expert-systems theory. But FISST
addresses both! When did misrepresentation and
puffery come to suffice as “first principles”?

In asserting no significant difference between
single-target and multitarget Bayes statistics,
such partisans also fail to account for the actual,
major differences—most seriously, by erroneously
presuming that the naïve multitarget generalizations of
the single-target Bayes-optimal state estimators exist.
What is the credibility of “plain-vanilla Bayesian”
when one of its central decision procedures is “not
invariant under even a change of units”—especially
given that these are the words used by one partisan
in criticizing the same type of error in work that
preceded his own?

The “plain-vanilla” stance essentially repudiates
the formal statistical modeling standard that FISST
directly extends to multisensor-multitarget problems.
But “plain-vanilla” implementation has produced
a succession of ad hoc, brute force algorithms
afflicted by inherent—but less than candidly
acknowledged—computational “logjams.” When
did “logjams” become exemplars of down-to-earth
engineering practicality?

VII. SUMMARY

We have summarized the motivations, concepts,
techniques, and applications of finite-set statistics
(FISST). FISST is at root a careful, direct
generalization of formal Bayes statistical modeling
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to multisensor-multitarget problems. Ironically, this
fact partly explains why many find it somewhat
formidable. Data fusion engineers have typically
been trained to think in bottom-up terms, rather
than from the system-level viewpoint that direct
generalization requires. As familiarity increases and
as—hopefully—FISST continues to move closer
to application, we expect that it will seem less
novel. Because FISST closely emulates the familiar
“Statistics 101” formalism, it is—with suitable
pedagogic streamlining—potentially accessible to
advanced undergraduates. For the interested reader,
the best entry points into FISST are the technical
monograph [15] or its condensed version [18].
References to more detailed aspects of FISST can be
found in the body of the paper.
For lack of space, we were unable to describe the

other major goal of FISST: extending formal Bayes
modeling methods to data that is ambiguous, either
because it is itself mathematically difficult to model or
because the process by which it is generated (i.e., its
likelihood function) is imperfectly understood. See the
publications [8, 15, 20, 29] for further detail.
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