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z DEVCOM Cognitive Radar for Spectrum Sharing: Challenges,

Methodologies, and a Path Towards Operation!

e Qutline:

Spectrum challenges and opportunities: new paradigms for spectrum sharing ——

Coexistence definitions Radar

Communications

ARL capability trends
* Non-cooperative coexistence for radar dynamic spectrum access (DSA)

Spectrum sensing multi-objective optimization (SS-MO) and how to balance per ance
trade-off

time

Example of spectrum sharing and DSA between radar
and communication systems. Both systems access a
frequency allocation for a time, then vacant for the

Techniques for practical implementation

The software defined radar (SDRadar) for DSA others use.
A. Martone, M. Amin, “A view on radar and
Cognitive loss and the need for cognitive radar technique selection communication systems coexistence and dual functionality

in the era of spectrum sensing,” Digital Signal Processing,
Volume 119, 2021.

* Thank you!

IEEE, ARL, AFRL, Syncopated Engineering, National Instruments, Huntington Ingalls

Industries, Penn State, University of Kansas, Virginia Tech, Baylor University, Villanova,

New York Institute of Technology, University of Oklahoma, Georgia Tech Research Institute,

Fraunhofer FKIE 2

UNCLASSIFIED



z DEVCOM Spectrum Sharing Challenges
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DEVCOM Trajectory for Future Radars
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A paradigm shift is needed for future radars:

* Cognitive RF * Adaptable RF hardware * Agile waveforms/DSP
* Modular, multi-band HW/SW * COTS technology for radar * Networked radar/multi-statics
r Multi- Network & Adaptive Spectrum Waveform Cognitive \
Function Multi-Modal Hardware &  Sharing Diversity Radar &
Capability Digital Array Autonomy
Technology

Network of
Multifunction RF

21" Century Radar Development Path Sensors for Adaptation
to Multiple
Environments

Single Platform
Radar with
Fixed Solutions

20" Century Radar/Development Path

Single Single Defined Exclusive Standard Operator in the
Mission Platform Freq. Use of EET
Objectives Radar Operation Spectrum Waveforms
Band
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DeEvcom Radar Spectrum Sharing Paradigms: Overview and Definitions W
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A. Martone, M. Amin, “A view on radar and communication systems coexistence and dual functionality in the era of 5

spectrum sensing,” Digital Signal Processing, Volume 119, 2021. ncLassiFIED



Spectrum Sensing Multi-Objective Optimization (SS-MO)
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Multi-Objective Optimization
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Dogaru, “Passive Sensing for Adaptable Radar off for radar.
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Spectrum Sensing Multi-Objective Optimization (SS-MO)
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Multi-Objective Optimization
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E,'_:VCDM Dual Role Sharing: SS-MO Simulation with Moving Target
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This example considers the radar as the primary system that will share the spectrum if possible but control the spectrum if needed!

A.F. Martone, et. al., “Early target detection for adaptable MTI radar,” IET Radar, Sonar, and Navigation, Vol. 11, no. 10, July, 2017.



SS-MO Software Defined Radar (SDRadar)
Implementation: From Theory to Practice (ARL, KU,
PSU)
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COMPUTER

USRP X310 software defined radio (SDR) and host computer
«  Economical, well supported platform for RF system development
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B.H. Kirk, J.W. Owen, R.M. Narayanan, S.D. Blunt, A.F. Martone, K.D. Sherbondy, “Cognitive software defined radar: waveform design for clutter and
interference suppression,” Radar Sensor Technology XXI, International Society for Optics and Photonics, vol. 10188, Anaheim, CA, pp. 446-461.



= AA T Fast Spectrum Sensing (FSS) Algorithm
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The FSS is an algorithm to develop quick spectral situational awareness and refine information.

A. F. Martone, K. I. Ranney, K. Sherbondy, K. A. Gallagher and S. D. Blunt, "Spectrum Allocation for Noncooperative Radar Coexistence," /IEEE
Transactions on Aerospace and Electronic Systems, vol. 54, no. 1, pp. 90-105, Feb. 2018



Z pDeEvcon  Real Time SDRadar (with IfSS.) :fmd Cognitive Radio Demonstration ;= fa PennState
(ARL, Virginia Tech, PSU, KU) KU

Cognitive Radar Transmissions
(blye)

Cognitive Radar “Reaction”
The radar Perception-Action

Cycle (PAC) is significantly
faster compared to the radio,
thus:

Coexistence Established!

(%2)
©
c
o)
O
)
2
S
g
=

Is 3.4ms fast enough to establish

Interface Software Defined Radar and Radio

Radio — Ettus n210, 1 base station and 1 mobile, 1MHz bandwidth, 500ms adaptation
Uplink from mobile to base station is potentially interrupted by radar
Downlink is out of band UNCLASSIFIED
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System
Resources:

* Host PC:
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* FPGA (SDR):
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FSS Implementation for Improved Coexistence
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B. H. Kirk, R. M. Narayanan, K. A. Gallagher, A. F. Martone and K. D. Sherbondy, “Avoidance of Time-Varying Radio Frequency Interference With
Software-Defined Cognitive Radar,”" IEEE Transactions on Aerospace and Electronic Systems, vol. S5, no. 3, pp. 1090-1107, June 2019.
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DEvVCOM Cognitive Radar (CR) Techniques for DSA

% ‘ Baylor University |} "
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These CR Techniques have different advantages and disadvantages for DSA.

A. F. Martone et al., "Closing the Loop on Cognitive Radar for Spectrum Sharing," IEEE Aerospace and Electronic Systems Magazine, vol. 36,
no. 9, pp. 44-55, Sept. 2021.
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Cognitive techniques can demonstrate significant improvements in

performance under correct modelling assumptions
How is radar performance affected by modelling errors?

How sensitive is the radar to modelling errors?

Robust Cognitive Radar
=  Analysis of radar robustness with cognitive techniques is essential
= Techniques can be used for increasing robustness:

Stochastic optimization
Can directly consider uncertainty in model parameters

Robust optimization
i.e. optimization of worst case performance

Cognitive Gain and Loss
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. Martone and A. Charlish, "Cognitive radar for waveform diversity utilization," 2021 IEEE Radar Conference (RadarConf21), 2021, pp. 1-6



DEvVCOM Metacognitive Radar Model

Cognitive Radar

Technique Selection
Waveform Parameter

Selection / Optimization
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1) Random Frequency 2) LTE 20 MHz
Hopper

3) LTE 40 MHz 4) LTE 60 MHz
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A.F. Martone et al., "Closing the Loop on Cognitive Radar for Spectrum Sharing,” IEEE Aerospace and Electronic Systems Magazine, 36(9), pp. 44-55, Sept. 2021.
A. F. Martone et al., "Metacognition for Radar Coexistence,"” 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 2020, pp. 55-60.



Z DEvCcomM Metacognitive Radar Real Time Demonstration on the SDRadar
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A.F. Martone et al., "Closing the Loop on Cognitive Radar for Spectrum Sharing," IEEE Aerospace and Electronic Systems Magazine, 36(9), pp. 44-55, Sept. 2021.



Z DEVCOM A Lens on the Future

» Spectrum sensing for aiding radar presents a form of cognition which is tailored to feedback knowledge of available
frequency bands to immediate decisions on radar parameters within the current PAC.

* Metacognition provides a high level of flexibility to select strategies of responses according to current needs and the means
for radar to adapt in disparate, dynamic spectral environments. It also provides a foundation to explore multiple PACs that
monitor the target scene and spectrum over near, mid, and long term time-lines.

* The next steps should consider radar operation to be a hybrid active-passive mode, which is a first step towards distributed
multifunction sensor nodes. In this mode, both free and occupied spectrum bands can be used by the radar!

* Signal opportunist in the bands occupied by the primary users and thereby presents itself as a passive sensor.
* On the other hand, for the designated bands, the radar becomes active, using its own transmitter and waveforms.

* A multifunctional sensor node should consider multiple sensing dimensions: Time, Frequency, Angle, Waveform (code), etc!

* A network of nodes will require a higher-level decision process

* How to switch between active-passive modes

17
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