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Introduction (1/2)

Optical sensors are widely used in target tracking systems. To date, there seems
to be no existing model for measurement extraction from optical sensors that
blends physics and statistics: the optics’ point spread function (PSF), pixel size,
dead zone and Poisson / Gaussian observed intensity levels.

A typical measurement extractor for a point target subject to a PSF consists of
two parts:

I The first part is the target location estimator, which provides the estimate of
the target location in the focal plane array (FPA) given the measured
intensities from the pixels in the FPA together with the accuracy of the
estimate (measurement noise variance for a tracking system).

I The second part is the target detector, which determines whether the
estimate comes from a target — this is done based on a statistical test that
yields the receiver operating characteristics (ROC).
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Introduction (2/2)

In this paper, we use a realistic model in which neighboring pixels are separated
by a dead zone in the FPA of an optical sensor.

I Assuming that the spatial energy density of the target deposited in the FPA
conforms to a Gaussian PSF and that the noise intensity in each pixel is
zero-mean Gaussian distributed (after demeaning) with moments given by
a Poisson process,

F we derive the Cramér Rao lower bound (CRLB) for the covariance of
the estimated target location in the FPA.

F the optimal pixel size for minimum CRLB for target localization
variance is also obtained.

I Target detection is performed using the generalized likelihood ratio test
(GLRT) to determine whether a target exists at the estimated location. The
test statistic is shown to be the output of a matched filter centered at the
estimated location, which is the maximum of the matched filter outputs in
the FPA.
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The Model (1/2)
The spatial density of the intensity at location (x, y) from a target at θ , (ξ, η)

′
in the FPA

is given by the (circular) Gaussian PSF

f(x, y;θ) =
1

2πσ2
exp

{
−

(x− ξ)2 + (y − η)2

2σ2

}
(1)

where σ is the spread of the PSF.
Assume each pixel has a square shape with side a, and any two neighboring pixels are
separated by the dead zone with width µ.

The portion of energy deposited in the (i, j)th pixel
is then

pi,j(θ) =

∫ xi+a/2

xi−a/2

∫ yj+a/2

yj−a/2
f(x, y; θ)dxdy

=

[
Φ

(
xi + a/2− ξ

σ

)
− Φ

(
xi − a/2− ξ

σ

)]
×
[
Φ

(
yj + a/2− η

σ

)
− Φ

(
yj − a/2− η

σ

)]
(2)

where Φ(·) is the standard 1-D Gaussian
cumulative distribution function (CDF).

i+1

Fig. 1. Topology of the FPA (the shaded area
represents the dead zone).
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The Model (2/2)
The FPA fill factor is defined as the ratio of pixel areas to the total area of the FPA and
yields (approximately) the total portion of target energy deposited in the FPA

ψ ,
a2

(a+ µ)2
≈
∑
i

∑
j

pi,j(θ) (3)

The measured signal intensity in pixel (i, j) is

zi,j = Ipi,j(θ) + wi,j (4)

where I is the total energy from the target (number of photons), the noise intensity wi,j is
assumed to be white and Gaussian with zero mean and variance proportional to the area
of the pixel (this approximates a demeaned Poisson noise)1

σ2
w = sa2 (5)

where s is the spatial density of the noise intensity and

R = diag[σ2
w] (6)

1
The number of photons is assumed Poisson distributed, i.e., its mean and variance are the same. The mean is subtracted

via the demeaning.
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Target Location Estimation

Define the stacked vectors: Z , {zi,j}, P(θ) , {pi,j(θ)} and W , {wi,j}. The
log-likelihood function of θ is then

λ (θ; Z) , ln p(Z|θ) = −
1

2
[Z− IP(θ)]

′
R−1[Z− IP(θ)] + C (7)

where C is an irrelevant constant.

The maximum likelihood estimate (MLE) of θ is obtained as

θ̂ = arg max
θ

λ (θ; Z) (8)

The Fisher information matrix (FIM) for θ is obtained as

J(θ) , E
[
∇θλ

(
∇θλ

)′]
= I2

(
∇θP(θ)

′)
R−1

(
∇θP(θ)

′)′
(9)

The Cramér Rao lower bound (CRLB) is then

PCRLB = J(θ)−1 (10)
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Simulation Results for Target Location Estimation (1/3)

Parameters Setup: σ = 1, s = 1, θ = [ξ η]
′

= [0 0]
′
.2

Assume dead zone width µ ∈ {0.01, 0.02, 0.03, ..., 0.1} (in units of σ). For a given µ, we
vary the pixel size a to see how the CRLB-based standard deviation σCRLB (in each
coordinate) — the target location estimate accuracy — changes.

The optimal pixel size aopt that minimizes σCRLB and the corresponding fill factor ψ(aopt)
for different µ are summarized in Table 1.

µ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

aopt 0.3891 0.4885 0.5575 0.6120 0.6576 0.6972 0.7322 0.7635 0.7912 0.8158
ψ(aopt) 0.9505 0.9229 0.9005 0.8811 0.8637 0.8478 0.8331 0.8193 0.8063 0.7935

Table 1. Optimal pixel size for minimum CRLB

For large pixel size, the accuracy decreases due to coarse granularity.

For small pixel size, the fill factor is lower and the SNR decreases.

2
We also randomized the target location within the pixel and dead zone. The resulting CRLBs did not change significantly

(less than 1%.)
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Simulation Results for Target Location Estimation (2/3)
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Fig. 2. σCRLB and fill factor ψ vs. a for different dead zone µ (all in units of σ).

The (often used) fill factor ψ = 0.9, while not exactly at the minimum, still yields almost the same
performance.
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Simulation Results for Target Location Estimation (3/3)
Efficiency of MLE vs. signal-to-noise ratio (SNR)

The raw SNR (prior to matched filtering) is defined as the ratio of the target energy
deposited in the 8σ × 8σ square to the RMS value (SD) of the noise intensity in the same
area

γ =
99.99%I × ψ√
s(8σ)2 × ψ

=
99.99%I

8σ
√
s

(11)

We will convert it to dB as 10 log10 γ as the above is the ratio of energies.
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Fig. 3. Sample SDs σξ, ση vs. CRLB-based SDs as a function of SNR for some of the optimal
(µ, a) pairs over 1, 000 Monte Carlo runs.

The MLE of the target location is efficient down to 6dB.
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Target Detection
To determine whether a target is present, the following hypothesis test problem is used:

H0 : Z = W target absent

H1 : Z = IP(θ) + W target present
(12)

The log-likelihood ratio (LLR) for these two hypotheses is given by

L(Z) = ln
p(Z|θ,H1)

p(Z|H0)
= ln

1√
|2πR|

exp
{
− 1

2
(Z− IP(θ))

′
R−1 (Z− IP(θ))

}
1√
|2πR|

exp
{
− 1

2
Z′R−1Z

}
= IP(θ)

′
R−1Z−

1

2
I2P(θ)

′
R−1P(θ) (13)

As the true value of θ is not available, we use the MLE (8) in (13), which leads to the
generalized likelihood ratio test (GLRT). Then (13) becomes

LG(Z) = IP(θ̂)
′
R−1Z−

1

2
I2P(θ̂)

′
R−1P(θ̂) (14)

As P(θ̂)
′
R−1P(θ̂) is not related to Z, we choose the following test statistic

T (Z) = P(θ̂)
′
Z (15)

which is the matched filter (MF) output at the estimated target location.
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Distribution of the test statistic under H0 (1/3)
Under H0, Z = W. The test statistic is

T (Z) = P(θ̂)
′
Z = max

θ

{
P(θ)

′
W
}

(16)

Consider that the θ that maximizes P(θ)
′
W is chosen from the list with M elements

Θ ,
{
θj
}M
j=1

. Therefore, the CDF of T (Z) at value t is

Pr (T (Z)< t|H0) = Pr

(
max
θj∈Θ

{
P(θj)

′
W
}
< t|H0

)
=

M∏
j=1

Pr
(
P(θj)

′
W< t|H0

)
(17)

where it is assumed that all the M MF outputs P(θj)
′
W are mutually independent.

For any θ in the FPA (except those on the edges), if the FPA is large enough to cover all
the target energy,

P(θ)
′
P(θ) =

∑
i

∑
j

(pi,j(θ))2 ≈ C(µ, a) (18)

where C(µ, a) is a constant depending on the µ and a.
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Distribution of the test statistic under H0 (2/3)
We assume the M MF outputs are independently identically distributed (i.i.d.) as

P(θj)
′
W ∼ N (0, C(µ, a)σ2

w) (19)

The number M is determined later.

Therefore, the CDF of the test statistic is

Pr (T (Z) < t|H0) ≈
(

Φ

(
t

σw
√
C(µ, a)

))M
(20)

Given a false alarm probability Pfa, the threshold τ is determined from

(
Φ

(
τ

σw
√
C(µ, a)

))M
≈ 1− Pfa (21)

which yields

τ ≈ σw
√
C(µ, a) Φ−1

(
(1− Pfa)1/M

)
(22)
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Distribution of the test statistic under H0 (3/3)
The only unknown variable in (22) is M . An empirical way of choosing M that we found
satisfactory is

M =

(⌈
N(a+ µ)

σ

⌉)2

(23)

which means that we assume there are
⌈
N(a+µ)

σ

⌉
equivalent independent matched filter

outputs in each dimension (N is the number of pixels in each dimension of the FPA).
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Fig. 4. Histograms from 104 Monte Carlo runs and corresponding PDF and CDF of T (Z) based
on (20) under H0 when N = 1000 (1Mpx FPA), µ = 0.1, a = 0.82 and M = 840, 000.
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Distribution of the test statistic under H1 (1/2)
Under H1, the test statistic becomes

T (Z) = P(θ̂)
′
Z = P(θ̂)

′
(IP(θ) + W) (24)

Taking the first order Taylor expansion of P(θ̂) around θ yields

P(θ̂) ≈ P(θ) +
(
∇θP

′)′ (
θ̂ − θ

)
(25)

Define the estimation error as θ̃ , θ̂ − θ. If θ̂ is efficient,

θ̃ ∼ N (0,PCRLB) (26)

which is assumed to be independent of the measurement noise W (θ̂ depends on the
small peak MF region while W contains the noise in all the pixels).
The test statistic (24) is approximated as

T (Z) ≈
(

P(θ) +
(
∇θP

′)′
θ̃

)′
(IP(θ) + W)

= IP(θ)
′
P(θ) + P(θ)W + Iθ̃

′ (
∇θP

′)
P(θ) + θ̃

′ (
∇θP

′)
W (27)
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Distribution of the test statistic under H1 (2/2)
As
(
∇θP

′
)

P(θ) ≈ 0 (this is an even function × an odd function), the test statistic is then

T (Z) ≈ IP(θ)
′
P(θ) + P(θ)W + θ̃

′ (
∇θP

′)
W (28)

The first two moments of the above (under H1) are

mT , E [T (Z) |H1 ] ≈ IP(θ)
′
P(θ) ≈ IC(µ, a) (29)

σ2
T , E

[
(T (Z)− E [T (Z) |H1 ])2 |H1

]
≈ E

[
P(θ)

′
WW

′
P(θ)

]
+ E

[
θ̃
′
∇θP

′
WW

′ (
∇θP

′)′
θ̃

]
≈
(
sa2C(µ, a) +

2s2a4

I2

)
I2

(30)

Therefore, T (Z)|H1 ∼ N
(
mT , σ

2
T

)
. The matched filter output SNR is then defined as,

similarly to (11)

γMF =
mT

σT
(31)

The detection probability given the threshold τ (22) is

Pd = Pr (T (Z) > τ |H1) = 1− Φ

(
τ −mT
σT

)
(32)
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Simulation results for the detection performance (1/2)
First, for a given dead zone width µ, raw SNR γ and false alarm probability Pfa, the
relationship between the detection probability Pd and the pixel size a is shown below.

I There is a small mismatch between the analytic Pd (32) and simulation-based Pd for
small SNR.

I Pd increases and then decreases as a increases.
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Fig. 5. Detection Probability Pd vs. pixel size a for different (raw) SNRs when Pfa = 10−4 and
µ = 0.1.
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Simulation results for the detection performance (2/2)

Second, the receiver operating characteristic (ROC) curves (Pd vs. Pfa) are plotted for
given µ, a at different (raw) SNRs.
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Fig. 6. ROC curves for µ = 0.1, a = 0.82.
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Conclusions

This work derived the measurement extractor for a point target with unknown
location in an optical sensor’s FPA.

Firstly, we derived the CRLB for covariance of the estimated location based on
the assumptions that energy density of the target deposited in the FPA conforms
to a Gaussian PSF and that the noise variance is proportional to the pixel area.
Simulation results show that there is an optimal pixel size that minimizes the
CRLB for a given dead zone width. The MLE is shown to be efficient at higher
SNRs.

Secondly, we investigated target detection: the GLRT statistic uses the
maximum MF output in the FPA. The distributions of the test statistic under both
(target absent/present) hypotheses are explored. It is shown that the detection
probability is remarkably flat around the optimal pixel size for minimum
estimation errors for a certain false alarm probability and SNR.
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