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e Introduction

e Motivations and Application Scenarios
« Taxonomies

« Key elements and research areas

e Multi-drone Research @ UniNa

e Perspectives and conclusion
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QEZS Agglbence Introduction
b sl

e Multi-drone systems and swarms: key
elements within the evolution of UAS
technology

e Increasing impact in military and
civilian applications, as well as in the
regulatory evolution, tightly linked
with improvements in UAS autonomy

e A way to scale up operations and
overcome technological limits of %
single vehicle architectures, for ;
different classes of UAS

e Lecture objective
- Introduce motivations and principles

- Address enabling technologies and
recent research efforts

- Discuss perspectives

i

(UniNa multi-drone flight tests)
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- | UNINA . .
.:.;2'5 y Introduction - terminology

e Level of coordination and
technological requirements may
change greatly - «swarming»
terminology used regardless of
collective behaviour nature

e Within the research community,
«swarming» has been linked to
coordinated guidance and relative
motion control

(https://www.darpa.mil/news-events/2021-12-09)

o Within regulations and in the users
community, «swarming» is used to
emphasize the 1-to-N remote control
paradigm

e In general, multi-drone systems
include a number of drones who work
synergistically towards a common
mission goal

(https://uavcoach.com/teal-drones-4-ship/)
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- i UNINA . .
a;%s s General motivations and concepts

. Typlcal potential advantages:
Time efficiency

- Cost . .
- Simultaneous actions MUlt]'drone Algor]thms
- Complementarity
- Fault tolerance destination, map
- Flexibility obstacles . |
- Performance . path planner ]
waypoints ]
status
 Multi-drone blocks as higher layers that - path manager
can be interfaced with ath defintion -
planning/guidance at different levels . recng et
airspeed, path following
altitgde, B position error
e Coordination and cooperation Bl I _ |
] autopilot
. . . servo commands .
« Communications and networking S . . state estimator —
unmanned aircraft 2(t)

wind — ¥

on-board sensors

e From 1-to-1 to 1-to-N and M-to-N

paradigm (Beard and McLain, Small Unmanned Aircraft Theory

. . and Practice, 2012)
e Human-swarm control and interaction
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i_Z.”';gS %%’:&%Ms Military Applications

- In the military field, swarms are in
general considered as «force multipliers»

- Key areas/applications

e Multi-vehicle attack or defense -
attritable systems

» Distributed sensing for enhanced
situational awareness, cooperative target
detection and tracking (information
superiority)

e Enhanced mission performance and
resilience thanks to multi-drone planning,
guidance, navigation, and control logics

- Swarming and counter-swarm
technologies

- Strong link with manned/unmanned
teaming and optionally piloted aircraft
systems, as well as with mission
autonomy concepts (human-autonomy
and human-swarm interaction)

- Multi-vehicle fusion as natural evolution
of advanced pilot situational awareness
Improved pilot awareness (5° generation fighter)
(https://www.flightglobal.com/f-35-programme-receives-
first-rockwell-collins-gen-3-helmet/117935.article)
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§2" %MUCNE'NH Military Applications - Swarming and
- Manned-Unmanned Teaming

- Mission control with different levels of interoperability
(LOI), 1to 5

- Cooperative Mission Execution ﬁ:n‘ﬁ il

- Integrated Human Machine Interfaces to reduce crew {—a o
workload

- Many recent flight demonstrations (mainly with
rotorcraft)

- Swarming and MUM-T as foundational concepts in the
technological evolution towards 6° generation fighters

Live feed from drone

(https://theaviationist.com/2020/10/20/aw159-wildcat-helicopter-
remotely-controls-a-uav-in-uks-first-manned-unmanned-teaming-
mumt-trials/)

(https://www.airbus.com/en/products-
services/defence/uas/uas-solutions/manned-unmanned-

. (https://www.youtube.com/watch?v=mrvZWaB7_1E)
teaming-mum-t)
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Military Applications: Air-launched
Swarms and Multi-scale Swarming

e Several running projects, e.g.

- DARPA project GREMLINS focuses on airborne
deployment and recovery of UAV swarms

- Airbus recently demonstrated 4-drones control
from a tanker

e Multi-scale swarming e

_‘-‘ ‘y';;}?
=

de
recovery altitude

gremlin /
pe——_——’

L ]

'-_+[arget

(https://www.darpa.mil/program/gremlins)

e

(https://www.aero-mag.com/xg-58a-valkyrie-swarming-
drones-09042021/)

(https://www.airbus.com/en/newsroom/news/2022-02-future-
combat-air-system-a400m-clears-the-first-hurdle-as-a-remote-carrier)
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GEQS AL _gﬁ?‘éﬁi Military Applications: Other examples

« R&D programs

- DARPA program OFFSET s b ot , to eterct we,

« aimed at developing swarm tactics and adaptive high
level control concepts with a focus set on small
unmanned aircraft

- AFRL Skyborg - Low cost attritable flight
demonstration program

- Boeing Airpower Teaming System 0 motrorce o R —
. . Wmﬂwﬁ and Gispersed sensing,
- Other known developments in many countries Auaon, and detiation o

e In the field of small UAS, defense-oriented
multi-drone systems which can be controlled in
a centralized way have appeared on the market

Tactics provide an ideal level of abstraction
for capturing commander’s intent

OFFSET Focus
Swarm
Mission Warfighting Needs
West Village
HEIGHT: ground _ infinity Swarm (-\

lm_ Technology Push

~ it
= L) 4
o N

(https://uavcoach.com/teal-drones-4-ship/) (https://www.darpa.mil/program/offensive-
swarm-enabled-tactics)
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§2_ %E&%C]NE'N Civilian Applications

e Multi-drone systems and swarms offer great
potential also in a variety of civilian
scenarios

e Applications include
- Precision agriculture
- Cinematography
- Civilian ISR
- Mapping and infrastructure inspection
- Package delivery
- Joint load transportation 21
- Communication networks 04
- Search and rescue

Number of papers

Networks
SLAM

Drone shows
Fire fighting
Meteorology
None

Defense systems

o Similar to military applications, key
advantages are linked to
- Scalability: e.g., coverage per unit time
- Enhanced mission performance G. Skorobogatov et al., Multiple UAV
» Distributed sensing Systems: A Survey, Unmanned Systems,

 GNC advantages, e.g. flight in challenging
environments Vol. 8, No. 2 (2020) 149-169

Video surveillance
Photogrammetry
Loads carrying
Traffic monitoring
Search & rescue
Cinematography
Flood monitoring
Reconnaissance
Radiation detection
Location verification
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Civilian Applications: examples

Mapping / Area monitoring

Ca Ca Ca

(b) (c)

Cach

(d) (e) (f)
(Balampanis et al, Area Partition for Coastal Regions with Multiple UAS, JINT
2017)

UAV ] =— UAV2 — UAV 3 parallel lines

UAV 1 path
UAV 2 path
—— UAV 3 path
\r reo "1‘ enclosing prism

J\inl.\_u,/ZS“ N, L

UAV 1 path

Ap UAV 2 path
(Scherer et al, An Autonomous Multi-UAV System for Search S T
and Rescue, Proceedings of the First Workshop on Micro Aerial Vehicle ‘ A ab
Networks, Systems, and Applications for Civilian Use, 2015) (Causa et al, Multi-Drone Cooperation for Improved LiDAR-

Based Mapping, Sensors 2024)
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C:;%S %@% Civilian Applications: examples

Communication Networks Joint Load Transportation

A S e A

\ \

- :] E ( ) network
D D e—
G d gateway
II].O\ erloaded .,.\lalfun(‘llouluﬂ ———— MASTE R
base station base station

(a) UAVs as network gateways

m\\; =

- - . - J
(b) UAVs as relay nodes v " \;_ S TR, e L R M

Shakhatreh, H., Sawalmeh, A. H., Al-Fugaha, A., Dou, Z., Almaita, E., Khalil, 1., Tagliabue, A., Kamel, M., Verling, S., Siegwart, R., and Nieto, J., “Collaborative
Othman, N. S., Khreishah, A., and Guizani, M., “‘Unmanned Aerial Vehicles transportation using MAVs via passive force control,” 2017 IEEE International
(UAVs): A Survey on Civil Applications and Key Research Challenges,” IEEE Conference on Robotics and Automation (ICRA), 2017, pp. 5766-5773

Access, vol. 7, 2019, pp. 48572—-48634
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F‘.;%S %@’ﬁ&%m Civilian Applications: DIY swarms

e 1-to-N monitoring and control capabilities offered by open
source GCS software tools (e.g. Mission Planner, Mavproxy)

EE .
e I oo 5
;

2nd mav

MAV Don COM49 R4

[Arm (exI | [Disarm (exl | [ [ f Connedt )
o e Taveor ) [P Mavienconss - (WCEEE) e D
Stage 1

MAV 1.0n COM53

1
16
14
1
1

https://ardupilot.org/planner/docs/swarming.html
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F‘.;%S %@’ﬁ&%m Regulations for multi-drone systems

« «Swarms» have appeared in the regulations (FAA, EASA) as centralized systems - operations requiring
risk assessment

e Multi-drone operations with 1-to-N remote control paradigm are being authorized
e Link with BVLOS operations and their safety concepts and risk mitigation strategies

e Clear trend towards 1-to-N and M-to-N paradigm

x FAA awards first approval for drone swarm testing

e . -

FAA approves agri-drones for BVLOS,
swarming and night flights

(7 July 52024 @ UAS traffic management news
https://www.unmannedairspace.info/latest-news-and-
information/faa-approves-agri-drones-for-bvlos-swarming-
and-night-flights/

https://www.llnl.gov/article/51291/faa-awards-first-approval-drone-swarm-testing

G. Fasano, Principles and Cooperative Techniques for Multi-drone Systems and Swarms, Sep 17 2024



) UNINA .
neds p g Taxonomies
el

e« Maza et al. (2015) proposed a
classification as follows:

- Physical coupling. In this case, the UAVs are

connected by physical links and then their . :
Elnotiorés are hconstrainedfby r1;orces that X A
epend on the motion of other UAVs. \.}; . A A
‘e SoroREA
- Formations. The vehicles are not physically ¥ -
coupled, but their relative motions are e a -
strongly constrained to keep the formation. (\ > a4 <f Nl
- < T ]
g | |
- Swarms. They are homogeneous teams of SR 2 AN 'y $
many vehicles which interactions generate ZARN \(\ I v
emerging collective behaviors. ~— ke ¥

- Intentional cooperation. The UAVs of the (I. Maza et al, Classification of Multi-UAV
team move according tO. trajectories Architectures, Handbook of Unmanned
defined by individual tasks that should be Aerial Vehicles, 2015)
allocated to perform a global mission

G. Fasano, Principles and Cooperative Techniques for Multi-drone Systems and Swarms, Sep 17 2024
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el

. team
- Collective Org. — ‘
squadron
group

Spatial relations T physical coupling
— virtual coupling
— no coupling
— simultaneous
+ Temp. relations — asynchr.sequent.

e Other more recent approaches focus on the number - asynchr.stand-in
of UAVs (e.g., teams, formations or swarms) — asynchr.call-in

e identical
—— Similarity — )

similar

— heterogeneous

e or consider different classifications logics based on MAUAY | o ation e
Var]OUS aSpeCtS Koss—fuﬁctional

o — centralized
- Mission control — .
— decentralized

mixed

o ) real-time
User interaction - .
— pre-planning

— no interaction
full

none

+ Automatic plan

fixed

dynamic
low-level

JISystem autonomy
— medium-level

high-level
Fig. 3. Proposed taxonomy for multiple UAV systems.

(G. Skorobogatov et al., Multiple UAV Systems: A
Survey, Unmanned Systems, Vol. 8, No. 2 (2020) 149-
169)
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el

e Several areas are involved in the desigh and operation of
multi-drone systems

o Different applications may be mapped towards these areas,
involving some of them and/or their interaction

Cooperative Cooperative
Planning Guidance
C

ooperative

@mmunicatioD Navigation
Cooperative
' : Control
Information Processing
and Data Fusion
<Relative Sensing>
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C:;%S %F_’_’:CE Multi-drone Research @ UniNa

e Cooperative planning, guidance, and navigation to overcome single vehicle limits in small
UAS / low altitude applications

e Focus on outdoor missions

e Integrated approach, several (interconnected) research paths:
- Cooperative navigation: potential linked with redundancy, spatial diversity, information sharing

« Improvement of navigation performance under GNSS coverage
Attitude
Inertial biases
Magnetic biases

« Improvement of navigation performance in GNSS challenging environments
e Integrity augmentation
« Scalable decentralized cooperative navigation

- Cooperative guidance
- Relative sensing

- Multi-drone path planning
e Heterogeneous mission environments
e Routing and task assignment for homogeneous / heterogeneous fleets

e Research directions

G. Fasano, Principles and Cooperative Techniques for Multi-drone Systems and Swarms, Sep 17 2024



,.;25 eyt N Cooperative navigation under GNSS

=i SYSTEMS

coverage

IDEA: Define a more accurate attitude of a «chief» UAV
measuring the Line of Sight w.r.t. «deputies»

* In CRF — BRF with visual tracking
algorithms —
* In NED with GNSS measurements -(C)DGNSS baseline J_* Propagation
Extends the GNSS multi-antenna concept to a multi-vehicle . X l Ej
scenario —
Example applications: geolocation, sensor fusion of data ]
from multiple drones, 3D reconstruction
LZ o - —
..g’/) gc ’ (Vetrella et al, Multi-UAV Carrier Phase Differential GPS and
T Vision-based Sensing for High Accuracy Attitude Estimation,
T L 2018, Journal of Intelligent and Robotic Systems: Theory and
—1  deputy1 o
e Applications)
) Mo
D

G. Fasano, Principles and Cooperative Techniques for Multi-drone Systems and Swarms, Sep 17 2024



Cooperative navigation under GNSS
coverage

+ DGPS/Vision

<

1
h
T

L

< > CDGPS/Vision

5 —Pelican Navigation Filter
E-10f 1
w

=

=_15k i
E 15

N

<

] ]
o [§%]
L9 o
— T
M

0 20 40 60 80
time (s)
(Vetrella et al, Attitude estimation for cooperating UAVs based on tight integration of GNSS
and vision measurements, 2019, Aerospace Science and Technology)
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.;2_ Al N Cooperative navigation under GNSS
= f

coverage

e Attitude error uncertainty can be predicted by analytical tools

e Increasing range to deputies and angular distance between them
enables more accurate attitude estimation (trade-off with
relative sensing challenges)

v % 0.16 T T T T T T
Q@ \‘\\_w Ay =30°
: 0_14.___ﬁ“i_:‘:__________________j Ay =40°
1 —

’ Ay =50°
Horizontal center X

| : e - S Ax =60°
i of the deputies’ 0.12F T A: =70°
EITJI formation i ] 5= Ay =80°
’1 2 - (1) ::- 0.1F .
I = : L e P s — = S
Ax >3 . = — — — -A®,, (d=40m)
. " 8 1
/, - I
’ = 1
4 I
\ .

0.08} oy | F— A® 4 (d=60m)
seasesessei 2D, (d=80m)
0.06 | ——— Ao, (d=100m)
€50 = 0.089
0.04 -
60 80 100 120 140 160 180 200

Local horizontal plane

(Causa, F.; Opromolla, R.; Fasano, G. Multi-Drone Cooperation for Improved LiDAR-Based Mapping. Sensors 2024)
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N | UNINA
AESS ’%@Q&Em Recent developments

« Concept exploitation for Lidar-optical based powerline
mapping

f"-:Fme IVERSITA DEGL STUDN DI NAFOL F R E E
% FEDERICO I Soft&Tlech

TOoP®VIEW  UNPHU

« AMPERE - Asset Mapping Platform for Emerging Countries
Electrification (2020-2022) - funded by EUSPA (EU Agency
for Space Programme - Horizon 2020 Programme)

'.)IP. ge@inumerics
e Cloud-based platform for electrical asset mapping and

inspections, powered by field data acquired with small UAS

e« Follow-on activities carried out within the national 4IPLAY

project
e \:h’*
& e &
e 0
" I\
:""'- = :“"'. (“onssrx |
_*7@'\;:*- + and/or
(Conssrx || n
MU ) b
A = W
—H o
= Y
[
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Recent developments

(Causa et al., Cooperation-Aided Accurate UAV-
Based LiDAR Mapping: Experimental Assessment,
ICUAS 2024)

G. Fasano, Principles and Cooperative Techniques for Multi-drone Systems and Swarms, Sep 17 2024



PAUCNEIN
H %v STEMS

« Cooperative navigation provides accurate and inertial/magnetic-independent attitude
information — Potential for improved in-flight estimation of inertial sensors biases

e The concept has been demonstrated in simulations and flight experiments

« Single deputy architectures may tackle observability challenges by changing the relative
geometry and thus providing spatial diversity to the measurements

Cooperative navigation: inertial biases

Simulation results

) ) no Aid cooperation
no Aid cooperation Reference 3o bound
Reference 3o bound =
s = 0,019, max = 0.024 o 0.06+ rms = 0.023, max = 0.025
1S . L] - . w
NQ 0.04 A - 0.04
E o0zif), — = 0.02 e
= &80
S g =0 -
B rms = 0.0025, max = 0.0049 e : —ms =0.0042, max = 0.008
rms = 0.042, max = 0.045
0.02+ rms = 0.045, max = 0.046 o~ 0
o~ 0 o
(S
E -0.02f ~= -0.05F
— L (] —_
< -0.04 £ V—*’:
< ®-0.06¢ - Q  -01F
F = 7 = 0.01
0.08 _ rms = 0.0025, max = 0.0052 : . [ms = 0,0067, max = 0.013
0.1 e 0.00045. max - 0.0023 0.1 rms = 0.00044, max = 0.0026
=0. . =0. o
™~ w
” Y
E 005 E 0.05
~ ™
E?, -va
ES =% ¢
rms = 0.00044, max = 0.0028 . rms = 0.00037, max = 0.0023
0 100 200 300 400 0 L 200 300 400
time, s time, s

Two deputies Single deputy with geometry variation

(Causa and Fasano, Improved in-flight estimation of inertial biases through cdgnss/vision based cooperative navigation, Sensors 2021)
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.':."52'5 s Cooperative navigation: inertial biases

« Cooperative navigation provides accurate and inertial/magnetic-independent attitude
information — Potential for improved in flight estimation of inertial sensors biases

e The concept has been demonstrated in simulations and flight experiments

« Single deputy architectures may tackle observability challenges by changing the relative
geometry and thus providing spatial diversity to the measurements

no Aid cooperation

Flight results

Reference 3o bound
Ublox MBT ~ S L 04
? 3 [72]
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© 0
L @
=]
-0.2F
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g °l fN
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© -5k
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... Intel NucI7 07 45t
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(Causa and Fasano, Improved in-flight estimation of inertial biases through cdgnss/vision based cooperative navigation, Sensors 2021)
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i:i§2'5 %%PA(%E Cooperative navigation: magnetic biases

el

« Cooperative navigation may provide magnetic-independent accurate heading
estimate — integrated external/onboard magnetic biases evaluation

e The concept has been demonstrated in simulations and flight experiments

200
- \ 108 o—— 200
€ 150} ‘ ~ .
o < 150f
% 100 e’ o
o x \ S 5 100}
4 50 200 250 300 350 "‘I"
< 50f Ne
. N
200} 208 ] '
'_
; 1501 'E. 150}
o
'—
n 100} — % 100}
0 > L
T T
< 50 300 350 < 50t
g 0 T é’ 0 .
© N —_—y =0.1nT
a deg=20m = oy =100T
@ 100k g = 40m pa a7, =100 nT
pe \ d,,=100m S 1% \ o, =200 T |
.% \ d, =130 m g N —  0,=300nT
c N dy=170m 5 q
] N\
) d,y =200 m o . -
a 2 H ~—
o 2 o
5 2102 , i
%10.2. . S 0 50 100 150 200 250 300 350
= 0 50 100 150 200 250 300 350 elapsed angle, deg

elapsed angle, deg

(Vitiello et al, Onboard and external magnetic bias estimation for uas through cdgnss/visual cooperative navigation, Sensors 2021)
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« Cooperative navigation may provide magnetic-independent accurate heading estimate — integrated
external/onboard magnetic biases evaluation

 The concept has been demonstrated in simulations and flight experiments
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Chief start
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(Vitiello et al, Onboard and external magnetic bias estimation for uas through cdgnss/visual cooperative navigation, Sensors 2021)
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.-.,5‘-2._ At A Cooperative Navigation in GNSS-
=2 challenging environments

e Many applications require the unmanned
aircraft to fly in GNSS challenging
environments, at least in a part of the mission

« Navigation issues (no fix or bad dilution of
precision conditions) affect flight autonomy

e Additional aiding information needed

o= TS
e Approach: exploit cooperation with one or ﬁ e NI R
more UAVs under “good” satellite coverage: NGNS |
father(s)/son scheme BN AN
- inside the challenging area - low rkive sensii
satellite number / high DOP (obstructed signal) piormdion’broggly

- Father UAV is outside the challenging area and
has a reliable estimate of its position with a M
GNSS/INS filter - becomes an additional source
of information

EFRERERS
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,-.,5‘-2._ i A Cooperative Navigation in GNSS-
- . .
challenging environments

Cooperation performance depends on —9
- relative flight geometry
- GNSS constellation(s) and 3d scenario geometry

- Adopted sensors and processing strategies (RF ranging,
camera)

« generalized Dilution Of Precision (geDOP) concept
introduced to predict navigation performance of the Son
and thus support planning/guidance

. It extends the GNSS-based DOP concept to multi-drone
architectures exploiting cooperative navigation

o
260

2018-04-25, 12:10. Lat = 40.0, Lon = 40.0

Son to Father visual tracking Father to Son visual tracking RF ranging

(Causa and Fasano, Improving Navigation in GNSS-challenging Environments: Multi-UAS Cooperation and Generalized Dilution of Precision, 2020, IEEE
Transactions on Aerospace and Electronic Systems
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g |- AERSFSPACE
H - SYSTEMS
- enmcd

challenging environments
ETH ziirich

e Path planning technique of the 8 & Bt s
father in a tandem formation : —
been developed using geDOP = =2 T ———

e 43.80 = 54.40

t =000 t, = 5440 El, -3.91° 17.64°

- _— r 22.20 31.18
o ! P ——. 0 20 40 60 80 Hbﬂ 1.73 1.12
jz p o 2 _ b) c)
22_ ﬁ;;}fﬂ 5 ol b MWW MW

50 0 50 5 -
b £
100 ) ° OWW WWM«W I gV

>
4
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£
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o T T T T X:G
20 - S = — <] -2 |
4 |
0 —frrrmT T T T P
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(Causa et al., Navigation aware planning for tandem UAV missions in GNSS

. . . Error in son’s navigation State
challenging environments, AIAA Scitech 2019)
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- . .
challenging environments

e «Hybrid» experiments (virtual 3d environment
simulated to remove satellites)

e Bounded meter-level error in absence of reliable
GNSS coverage, son-to-father visual tracking

a)
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(Causa and Fasano, Improving Navigation in GNSS-challenging Environments: Multi-UAS Cooperation and Generalized Dilution of Precision, 2020, IEEE
Transactions on Aerospace and Electronic Systems
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e Idea: use information redundancy and spatial diversity to enhance protection against spoofing and multipath
« All the aircraft communicate to each other and exploit relative sensing (range and angles)
. Definition of a (satellite-dependant) metric to select the best formation geometry named C-Slope
- Extends the “Slope” concept used in single vehicle navigation
- Can bbel_ct(_)nsidered as the inverse of sensitivity/observability - low slope/C-slope values imply enhanced fault detection and exclusion
capabilities
- Cooperation reduces Slope - reduced vulnerability
- System can be designed aiming to reduce max Slope values

Vehicle 1 C-slope: GPS + Glonass/ Two Vehicles formation
Ranging Camera
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(Causa and Fasano, Multi-drone cooperation to improve navigation integrity in low altitude urban environments,
2023 IEEE/ION PLANS)
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Cooperative navigation for integrity

Vehicle 1 C-slope: GPS + Glonass/ Two Vehicles formation - Ranging Instrument

Change of satellite coverage geometry
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(Causa and Fasano, Multi-drone cooperation to improve navigation integrity in low altitude urban environments,

2023 IEEE/ION PLANS)
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e Promising simulation results, to be validated in flight in real
operational environments
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(Causa and Fasano, Multi-drone cooperation to improve navigation integrity in low altitude urban environments,
2023 IEEE/ION PLANS)
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e Research interest in cooperative navigation approaches which are
- Scalable with respect to the number of aircraft and their operating conditions
- Adaptive with respect to communication conditions
- Redundant and resilient w.r.t. failures

e Decentralized approaches have been explored and customized
- Operating and Supporting Agents

« Promising performance to be verified in flight experiments

Agent 1 Filter Agent n Filter
Agent 1 Agentn e | \ oA1 oA2 oA3 ond 0A5 A6 |
propagation propagation
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— 1000¢
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(Causa et al, Decentralized cooperative navigation solution for a swarm of UAVs
operating in GNSS degraded environment, AIAA Scitech 2024)
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e Relative sensing (and communications) as key elements for cooperation

e Visual tracking exploiting conventional techniques and/or Al, and sensor fusion with
navigation sensors

. 1Ifllrst visual tracking implementations using adaptive template matching and morphologlcal
iltering
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(Opromolla et al., A vision-based approach to uav detection and tracking in cooperative L —
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applications , Sensors 2018) 0.7 075 08 0.85 0.9
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— drone-to-drone visual tracking

e« Then, deep learning-based detection concepts augmented with bounding box refinement have
been selected

e Again, detection/tracking architecture also exploits navigation sensors measurements

- RGB Image | e e e -
- Camera parameters : ! DL-based detector !
I
I

- Setting parameters ! J - T
- Tracker UAV —l Targe‘t U.AV BB detection _BB — l_“ A .
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(Opromolla et al., Airborne visual detection and tracking of cooperative UAVs exploiting deep learning, Sensors
2019)
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— drone-to-drone visual tracking

e Recent research introducing shape-based ranging techniques - meter-level range uncertainty
up to medium (few tens of m) distances for the considered drones

 The added value of passive ranging depends on the scenario and the geometry

o Closed-loop integration with cooperative navigation algorithms for GNSS-challenging

environments
DL-based detected BB

----Enlarged area for BB refinement 60+ . . .

% BB center predicted with varying L
Estimated target centroid predicted with constant L
Reference target centroid 501 true
Reference BB =

w401

(o]

©

=301
201
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frames

RMS error on the position in the challenging areas.

Scenario RMS norm, m Gain
Case 1: LOS + shape-based ranging Case 1 Case 2
. Bridge 1.83 2.08 0.13
Case 2: LOS Only Building 1.99 341 0.42
Canyon 2.40 2.88 0.17

(Causa et al., Closed loop integration of air-to-air visual measurements for cooperative UAV navigation in GNSS
challenging environments, Aerospace Science and Technology, 2022)
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tion

v Environments with mixed GNSS [ }
coverage conditions Ci” [ } [ ][ ]

v

v'Resources optimization

v'Cooperative navigation where k
and when needed

Synthetic scenario with
Coarse 3d model GNSS-challenging zones

(Causa et al., Multi-UAV path planning for autonomous missions in mixed GNSS coverage scenarios , Sensors 2018)
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e Vehicle Routing Problem scenario with multiple drones and no in-flight
cooperation

e Navigation-aware cooperative planning: «better equipped better planned»
paradigm

e Concepts extendable to centralized planning in U-Space/UAM

All UAVs with type B IMU

DOP Layers Definition

=

- Path selection and navigation check
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UAV1 =326.9 5,666.7 m
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Flight Planner = = = = = = = = =

(Causa and Fasano, Multiple UAVs trajectory generation and waypoint assignment in urban environment based on
DOP maps, Aerospace Science and Technology, 2020)
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Technology demonstration in operational environments
- Bridge inspection
- Flight in complex urban environments
e Real time implementation
« End-to-end integrated implementations including online cooperative guidance
e Integration of new GNSS signals / services (e.g., Galileo HAS and OS-NMA)

e Integration of other sensing architectures

e Interaction with other research paths
- Low altitude surveillance and navigation
- High density airspace operations
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« Significant progress in multi-drone systems, but their potential is yet to be fully
unleashed

e Scalability and impact
e Resiliency, cyber-security, autonomy

e Solutions and technologies are heavily application-dependant

. Fasano, Principles and Cooperative Techniques for Multi-drone Systems and Swarms, Sep 17 2024
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e Multi-drone evolution in phase with BVLOS operations
- Enhanced connectivity
- Routine operations may be foreseen in near term, at least for some applications

o Significant links with other research and development areas, e.g.
- Sensing for surveillance and navigation
- Fleet Management
- Management of high density airspace scenarios

e Evolution poses multi-disciplinary problems requiring an integrated approach
- Air/ground-based solutions and their interaction
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e Multi-drone systems as natural evolution of drone technology,
maximizing performance and efficiency

e Their development is pushed by technological progress, e.g. in
communications and computing power

o Within the civilian framework, the impact will be maximized as more
flights are demonstrated in operational environments, proving safety

e This lecture tried to briefly introduce main concepts and research
areas, and hopefully to stimulate ideas and developments
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