

IEEE AESS Distinguished Lecture

Distributed MHT and Extensions

Dr. Stefano Coraluppi STR Chief Scientist IEEE Fellow

Online, 5 November 2024

str/

Slide 2

Outline

- Multi-target tracking (MTT)
 - Multiple-hypothesis tracking (MHT)
 - Advanced centralized MHT
 - Distributed MHT
 - Simplified distributed MHT

Multi-target tracking (MTT)

- We are given a sequence of *sets* of measurements, and are to determine a *set* of trajectories
 - Unknown, time-varying number of targets
- An intractable posterior probability distribution both computationally and conceptually
 - $p \bigl(X^k | Z^k \bigr)$
 - Most approaches do not seek to evaluate this distribution; a rare exception is the JMPD by Kreucher et al. (2005);
 - Even if we could do so, what is the MTT output? There is a MAP estimation difficulty as noted by Mahler (2014)

Some comments on MTT methods

- Some MTT methods focus primarily on multi-target filtering, with no automated track management
 - GNN, JPDA, PMHT
 - Track management is handled externally, e.g. *Integrated JPDA* (JIPDA)
- Some MTT methods directly address both track management and multi-target filtering
 - MHT, MCMC, PHD, BP
- There is a distinct literature on *identity management* (IM) algorithms that addresses the coupling in target identity estimates

Linear Gaussian state evolution

- We often assume uncorrelated noise across dimensions
 - $-X_{k+1} = A_k X_k + w_k, w_k \sim N(0, Q_k)$
- Nearly constant position

$$-A_k = 1$$
, $Q_k = q\Delta t_k$, $\Delta t_k = t_{k+1} - t_k$

• Nearly constant velocity

$$-A_{k} = \begin{bmatrix} 1 & \Delta t_{k} \\ 0 & 1 \end{bmatrix}, Q_{k} = q \begin{bmatrix} \frac{(\Delta t_{k})^{3}}{3} & \frac{(\Delta t_{k})^{2}}{2} \\ \frac{(\Delta t_{k})^{2}}{2} & \Delta t_{k} \end{bmatrix}$$

• Ornstein Uhlenbeck

$$-A_k = \exp(-\gamma \Delta t_k), Q_k = q \frac{1 - \exp(-2\gamma \Delta t_k)}{2\gamma}$$

Linear Gaussian state evolution

Poisson target existence

- Initial time t_0 . Discrete time sequence $t^k = (t_1, ..., t_k)$. $\Delta t_k = t_{k+1} t_k$.
- Continuous-time birth-death process

– Arrival rate λ_b , death rate λ_{χ}

• Death probability

$$-p_{\chi}(\Delta t_k) = \int_{t_k}^{t_{k+1}} \lambda_{\chi} e^{-\lambda_{\chi}\tau} d\tau = 1 - e^{-\lambda_{\chi}\Delta t_k}$$

• Poisson birth rate

$$-\mu_b(\Delta t_k) = \int_{t_k}^{t_{k+1}} \lambda_b e^{-\lambda_\chi(t_{k+1}-\tau)} d\tau = \frac{\lambda_b}{\lambda_\chi} \left(1 - e^{-\lambda_\chi \Delta t_k}\right)$$

• Number of births in non-overlapping intervals are *independent*

Sensor modeling

str/

- Detection statistics
 - Point target assumption with detection probability p_d
 - Sensor Poisson clutter with mean Λ (uniformly distributed in measurement volume)
- Measurement statistics
 - $-z_k = g(X_k) + v_k$
 - Additive (Gaussian) noise

Operational performance metrics

- *Multi-target tracking* (MTT) yields a set of track trajectories — How do we compare this to the set of true trajectories?
- Operational performance metrics
 - Multiple measures are of interest: coupled and non-exhaustive
 - Most measures are not metrics in a mathematical sense
- Scalar performance metrics
 - OSPA, GOSPA, and track-level GOSPA
 - Scalar assessment (albeit with some parameters)
 - Satisfies requirements to be a mathematical metric

False tracks (these lower *track completeness*)

Outline

- Multi-target tracking (MTT)
- Multiple-hypothesis tracking (MHT)
 - Advanced centralized MHT
 - Distributed MHT
 - Simplified distributed MHT

Multiple-hypothesis tracking (MHT)

- Multi-target tracking challenge: an intractable posterior probability distribution *computationally* and *conceptually* $-p(X^k|Z^k)$
- Hybrid-state decomposition $-p(X^{k}|Z^{k}) = \sum_{q^{k}} p(X^{k}|Z^{k}, q^{k}) p(q^{k}|Z^{k})$
- MHT approach uses maximum a posteriori (MAP) estimation $-\hat{q}^{k} = \arg \max_{q^{k}} p(q^{k}|Z^{k})$ (MAP estimation here is well-posed) $-\hat{X}^{k} \approx \arg \max_{X^{k}} p(X^{k}|Z^{k}, \hat{q}^{k})$
- Recursive formulation

$$-p(q^{k}|Z^{k}) = \frac{p(Z_{k}|Z^{k-1},q^{k})p(q_{k}|q^{k-1})p(q^{k-1}|Z^{k-1})}{p(Z_{k}|Z^{k-1})}$$

Track-oriented MHT recursion

• Global hypothesis recursion in factored form

$$-p(q^{k}|Z^{k}) = p(q^{k-1}|Z^{k-1}) \cdot \frac{\left\{\frac{\exp(-\mu_{b}-\Lambda)\Lambda'}{r!}\right\} \prod_{z_{j} \in Z_{k}} f_{fa}(z_{j})}{p(Z_{k}|Z^{k-1})} \leftarrow \begin{array}{c} \text{Common to} \\ \text{all global} \\ \text{hypotheses} \end{array}$$

$$\cdot p_{\chi}^{\chi} \leftarrow \text{Target deaths} \\ \cdot \left(\left(1-p_{\chi}\right)(1-p_{d})\right)^{\tau-\chi-d} \leftarrow \text{Target missed detections} \\ \cdot \prod_{j \in J_{d}} \frac{(1-p_{\chi})p_{d}f(z_{j}|Z^{k-1},q^{k})}{\Lambda f_{fa}(z_{j})} \leftarrow \begin{array}{c} \text{Detection of previously} \\ \text{existing targets} \end{array}$$

$$\cdot \prod_{j \in J_{b}} \frac{p_{d}\mu_{b}f(z_{j})}{\Lambda f_{fa}(z_{j})} \leftarrow \begin{array}{c} \text{New target detections} \end{array}$$

- Online MHT identifies (approximately) the MAP data association solution over a sliding time window
 - Hypothesis forest depth is *n-scan* (set to one in example below)

More to MHT than scoring recursion

- The MHT equations prescribe a batch optimal solution; practical solutions involve judicious simplification
 - Sliding-window processing
 - Decouple data association and track management

In ideal settings things work very well

- Benign conditions
 - Data is well-matched to modeling assumptions
 - No complex detection or measurement effects (e.g. fading, bias errors, nonlinearity, limited observability, merged/repeated measurements)
 - No acquisition, processing, or communication delays
 - Manageable data volume with like sensors
- Performance trends match expectations
 - Benefit of increasing hypothesis depth
 - Benefit of increasing sensor data rate

Achieving performance requires more

Multiple Sensor

Outline

- Multi-target tracking (MTT)
- Multiple-hypothesis tracking (MHT)
- Advanced centralized MHT
 - Distributed MHT
- Simplified distributed MHT

Slide 19

Nonlinear filtering

XY view

• Sequential EFK, multiple-model filtering, particle filtering

Slide 20

Feature-aided tracking

- Feature-aided MHT
 - Enhanced likelihood ratio
 - Composite confirmation logic
 - State augmentation

Hypothesis aggregation

Slide 21

• Alternative views of MAP estimation

Highest-scoring (MAP) global hypothesis

Space of all global hypotheses

Highest-scoring (MAP) global hypothesis set

Highest-scoring (MAP) global hypotheses in this subset

A subset of data-indistinguishable global hypotheses

Hypothesis aggregation

 Aggregate over data-indistinguishable global hypotheses

- Aggregate over similar global hypotheses
- Enhanced MHT recursion for merged and repeated measurements

Coraluppi and Carthel, IEEE T-AES 2018

Coraluppi and Carthel, IEEE T-AES 2014

Coraluppi and Carthel, IEEE Aerospace 2012

Context-aware tracking

Slide 23

- Types of context
 - Aggregate patterns life
 - Motion constraints
 - Partial knowledge of target objectives (avoid detection, achieve mission, etc.)

Maritime traffic

Air traffic

• Approaches

- Modifying or augmenting sensor data
- Modify target dynamics, including Gaussian-mixture filters and particle filters

Single-model context-aware tracking

- All available context and prior information should be exploited — This is particularly beneficial in limited-coverage settings
- One approach to do so is to embed such information in a nominal trajectory
 Context-aware target model

Conventional processing

Context-aware processing

Single-model context aware tracking

• In simulations with N targets and large coverage gaps, *probability of correct association* (PCA) with data association processing degrades to the performance lower bound

-
$$PCA \approx \frac{1}{N}$$

- Use of generalized Ornstein-Uhlenbeck filters leads to a substantial performance gain
 - When coverage is good, tracking performance is similar to conventional processing
 - When coverage is poor, track filters give more weight to context, maintaining bounded and statistically-consistent uncertainty
 - Resulting target reacquisition is greatly facilitated

Multiple-model context-aware tracking

str/

Slide 28

• Uncertainty is decoupled across multiple filter modes

Outline

- Multi-target tracking (MTT)
- Multiple-hypothesis tracking (MHT)
- Advanced centralized MHT
- Distributed MHT
- Simplified distributed MHT

Distributed tracking

- Centralized tracking is optimal given no processing constraints
- Empirical advantages of distributed tracking
 - Robust to detection fading and measurement biases
 - Effective for limited-observability sensors or highly-disparate sensors (*track before fuse*)
 - Robust to high frame rate (*track before track*) or large networks of degraded sensors (*fuse before track*)
 - Enables asynchronous data association

cautious aggressive

Avoiding distributed estimation

- Objects of interest are sequences of associated measurements
 - Enables modularity, avoids track-correlation issues, allows for (static) measurement fusion, allows for stage-specific target & sensor models
- All modules perform object association
 - Breakage logic provides robustness
- Flexible connections between modules are possible
 - Track breakage, track suppression, multi-look processing, etc.

A single-sensor GMTI tracking example

Coraluppi et al., NSSDF 2016

• Excellent benchmark results compared to other solutions

Metric	МНТ	Non-MHT	STR MS-MHT
Combined Target Completeness	0.51	0.28	0.63
Number of Tracks	116	117	87
Average Track Life (frames)	172.97	116.60	273.85
Combined Track Completeness	0.85	0.68	0.89
Average Spuriousness per Frame	0.40	0.59	0.34

51

Hierarchical tracking

- Relevant to passive sonar & radar
 - Address observability and repeated-measurement challenges
 - Decouple challenges of clutter suppression, localization, and target-level tracking
 - Allow for architectural tradeoffs

Coraluppi et al., FUSION 2021

Multi-INT fusion

- Distributed MHT is insufficient
 - Asynchronous MHT provides some improvement (Coraluppi et al, IEEE Aerospace 2016)
- Hypothesis-oriented MHT can be simplified in many ways
 - Hybrid scheme exploits elements of MHT and classical graph-based tracking (GBT)
 - The essential simplifying assumption in GBT:

 $f(z_k|z^{k-1}) \approx f(z_k|z_{k-1})$

Assumptions	General	Partially Markov data	Markov data
General	HO-MHT (Reid 1979)	not investigated	Viterbi (Wolf et al. 1989)
Poisson targets and clutter	TO-MHT (Kurien 1990)	Graph-based fusion (GBF) (Coraluppi et al. FUSION 2016)	GBT (D. Castañón 1990) (G. Castañón et al. 2011)

- **GBF Illustration**
- Scenario: color indicates identity data

• GBF representation is compact and nearly lossless

MHT

3 4

GBF vs. MHT performance (notional)

- str
- MHT has slightly better performance that GBF for a given n-scan
- GBF has lower computational effort than MHT for a given n-scan

Outline

- Multi-target tracking (MTT)
- Multiple-hypothesis tracking (MHT)
- Advanced centralized MHT
- Distributed MHT
- Simplified distributed MHT

Issue #1: upstream errors

- MHT I generates IA, IB
- MHT II generates IIA, IIB
- MHT III initially forms IIIA, IIIB, only to detect anomaly
 - Simple corrective action incurs fragmentation

Issue #2: cautious first stage

Slide 39

• Difficult to enforce track breaks at relevant times

Issue #3: variable quality sensors

Slide 40

• Need for principled track fusion logic

Issue #4: non-fusion decisions

Slide 41

• How to revisit a non-fusion decision

Issue #5: upstream fragmentation

Slide 42

• How to relax association constraints

Temporally-overlapping tracks

Issue #6: wide-area tracking

Slide 43

• How to contend with multiple uses of the same measurement

Issue #7: distributed sensor networks

• How to contend with incompatible association decisions

Simplified distributed tracking

- The issues identified above can be mitigated by ignoring upstream association decisions
- A potentially better approach: introduce track label as a feature state in downstream tracking
 - One such state for each upstream tracker

Recovery from upstream error

- Input track breakage is account for in fused-track score
- No fused-track fragmentation

Fusion of fragmented tracks

Slide 47

• No hard constraint to invalidate fused-track continuity

Distributed tracker modeling

- Leverage *Mori Chang Chong* (MCC) exponential model for *probability of correct association* (PCA)
- Assume process noise governed by two-state Markov chain with $q_k \in \{q_{low}, q_{high}\}$

- *Multi-target tracking* (MTT) is an essential component of many automated surveillance capabilities
 - Multiple-hypothesis tracking (MHT) is the leading operational approach to MTT
 - Graph-based tracking (GBT) is a fast, approximate version of MHT
- There is significant empirical evidence of the performance and robustness benefits of distributed MHT
 - There is a *large design space* of fusion architecture, connectivity, and modules
 - *Calibration* is required for downstream processing stages
 - Some *undesirable effects* are due to the hard constraints posed by upstream data association decisions
- A simplified distributed tracking paradigm relaxes upstream data association hard constraints
 - Track label may be posed as a *target feature state*