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’ Multi-target tracking (MTT)

* We are given a sequence of sets of measurements, and are to
determine a set of trajectories

— Unknown, time-varying number of targets

* An intractable posterior probability distribution — both
computationally and conceptually
-p(X*|Z")
— Most approaches do not seek to evaluate this distribution; a rare
exception is the JMPD by Kreucher et al. (2005);

— Even if we could do so, what is the MTT output? There is a MAP
estimation difficulty as noted by Mahler (2014)



’ Some comments on MTT methods

 Some MTT methods focus primarily on multi-target filtering,
with no automated track management
— GNN, JPDA, PMHT
— Track management is handled externally, e.g. Integrated JPDA (JIPDA)

 Some MTT methods directly address both track management
and multi-target filtering

— MHT, MCMC, PHD, BP

* There is a distinct literature on identity management (IM)
algorithms that addresses the coupling in target identity
estimates



’ Linear Gaussian state evolution

 \We often assume uncorrelated noise across dimensions

— X1 = A Xy + Wi, wi~N(0, Q)

* Nearly constant position

—Ax = 1, Q) = qAty, Aty = triq

* Nearly constant velocity

1 At

— Ay = ]Qk:q

 Ornstein Uhlenbeck

— A, = exp(—yAty), Qr = q

[(AtR)3  (Atg)?]
3 2
2
(Atk) Atk

2

1—exp(—2yAty)

2y
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’ Linear Gaussian state evolution

Nearly-constant position Nearly-constant velocity Nearly-constant acceleration
w X w X w
Ornstein-Uhlenbeck Integrated Ornstein-Uhlenbeck Singer model
w — X w X w
—Y —Y —Y

2nd order Ornstein-Uhlenbeck
N
—Y2

—Y1




’ Poisson target existence

* Initial time t,. Discrete time sequence t* = (t4, ..., t). At;, =
L1 — k.
 Continuous-time birth-death process
— Arrival rate 4,, death rate 4,
* Death probability

- p,(Aty) = ftik“ Axe_’lxrdr =1 — e Btk

e Poisson birth rate

— up(Aty) = fti{k“ Ape M (ter1=D gr = j—i(l — e~ Mxhti)

 Number of births in non-overlapping intervals are independent



’ Sensor modeling

* Detection statistics
— Point target assumption with detection probability p,4
— Sensor Poisson clutter with mean A (uniformly distributed in
measurement volume)

e Measurement statistics

—Zx = g(Xx) + vy
— Additive (Gaussian) noise



’ Operational performance metrics

* Multi-target tracking (MTT) yields a set of track trajectories
— How do we compare this to the set of true trajectories?

» Operational performance metrics
— Multiple measures are of interest: coupled and non-exhaustive
— Most measures are not metrics in a mathematical sense

e Scalar performance metrics
— OSPA, GOSPA, and track-level GOSPA
— Scalar assessment (albeit with some parameters)
— Satisfies requirements to be a mathematical metric
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’ Completeness, purity, estimation error

Track fragmentation (this lowers

target purit
get purity) Non-tracked target (this

lowers target
\ completeness) \

Legend N -
Target
Track ——

State estimation error (this is averaged over
all target-track associations)

/\)X/

Track swap (this lowers

track purity) /

False tracks (these lower track completeness)
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’ Multiple-hypothesis tracking (MHT)

* Multi-target tracking challenge: an intractable posterior

probability distribution — computationally and conceptually
-p(X*|Z¥)
* Hybrid-state decomposition
-p(X*|Z¥) = X k0 (X*1Z%, ¢ )p(q"1Z¥)
 MHT approach uses maximum a posteriori (MAP) estimation
- §* = arg max_xp(q*|Z*) (MAP estimation here is well-posed)
— X* ~ arg max,« p(X*|Z¥,g*)
* Recursive formulation

ok rkY _ P(ZelZ" e )p(axld)p(a* T ZR )
p(q 1Z )— p(ZzF 1)




’ Track-oriented MHT recursion

* Global hypothesis recursion in factored form

exp(—ub—A)Ar}
{ [;.cz, fra(z;) Common to
- p(qk|Zk) = P(qk_1|Zk_1) . r kz_Jl k <— all global
p(Zilz*) hypotheses
. p))(( <« Target deaths

((A-p)a- pd))r_x_d

. (-pypaf(zj1z¥1a")

<— Target missed detections

' <—— Detection of previously
1 H€Ja Af ra(zj) existing targets
- Zj .
. Paipf(2)) <« New target detections

VUEIb Afpa(z))



’ Example

* Online MHT identifies (approximately) the MAP data

association solution over a sliding time window
— Hypothesis forest depth is n-scan (set to one in example below)

T1 T2
o L o> ke
®
track
O R3(t) R1Y R2 R1 RIS RaSR T hypothesis
R
T2 ® Ri(ty)
R3 O e ? R3 rs"
track coast optimal global track termination track update
hypothesis
T
11 1100 0 0 0 0]) account for tracks objective max c¢'x 1]
00001 1O0O0O0O0 T1and T2 subjectto Ax = b 1
A={1 0 0 01 01 0 0 0 x; € {01} b=|1
Account for (for each vector element)
011 00O0O0T1T1FPQO0 reports R1, R2, 1
d R3
010000010 1] 1]
N _/

Y
Track hypotheses
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’ More to MHT than scoring recursion

* The MHT equations prescribe a batch optimal solution;
practical solutions involve judicious simplification
— Sliding-window processing
— Decouple data association and track management

Logic-based track management

A 4

M-of-N confirmation
e . .
: K missed detections
Hypothesis )
Management —  Ttimeout
Detections Track
and/or Tracks ' - — Tracks
Management
Nonlinear
Filtering
Data Association MHT




’ In ideal settings things work very well

* Benign conditions
— Data is well-matched to modeling assumptions

— No complex detection or measurement effects oo v
(e.g. fading, bias errors, nonlinearity, limited o RN
observability, merged/repeated T SR
measurements) ”‘ \;*/ j

~ No acquisition, processing, or communication - <7y 28 B
detays - LN P

— Manageable data volume with like sensors ol LT SN RS

» Performance trends match expectations =~ =iecil i e
— Benefit of increasing hypothesis depth *
— Benefit of increasing sensor data rate



Achieving performance requires more

GMTI Tracking

OPIR Tracking

-

Video Tracking

Single Sensor

L]
8 i
 besssdizaonono ! : ,{'ﬁ’f
: J
aénssiso j
A

Multi-INT Fusion

SO

Multiple Sensor

Illustrations of
STR Multi-Stage
MHT (MS-MHT)
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’ Nonlinear filtering

» Geometric (vs. ML) track initialization
~ 112

—AOA sensors: | = X o[ Xi[|” = Xicy ollX — Xill?

— TDOA sensors °*

Discrepancy 1 ) 05T
n=X-X . Projection1
X S AL ‘ . ‘ ‘ .
Discrepancy 2 N ~%  Trackinitialization 3 25 -2 15 -1 -0.5 0 05
an =X—-X; 4,"‘1\\ N [ ] 25
7 N X=1y .
XZQ 2 XY view
Measurement 1 Projection 2 Optimal track initialization o
(61, ¢1) AN £ ! :
X= {’ 103l e
Z
1.02 -
" Sensor 1 fl Measuremen t2 \\
X =" (62, 92) . Sensor2 %, Lotr
. 21 . )?2 = }72 1
Coraluppi et al., FUSION 2021 z
0.98
097
0.96

« Sequential EFK, multiple-model filtering, T
particle filtering



’ Feature-aided tracking

e Feature-aided MHT

— Enhanced likelihood ratio
— Composite confirmation logic
— State augmentation

Lexa et al., FUSION 2021
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baseline A o Somner
- : rack 1
= —Truth 2
rack 2
False Alarms 6
alse Tracks
50
2 ]
E gw
w
30
X (m)
)
Enhanced ratio = s
- - reck 1
D —Truth 2
rack 2
lllllll larms
al?rTrm
£ =
s <
0 2 . '
X (m) o] Time (8)

Enhanced ratio and state augmentation
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’ Hypothesis aggregation

e Alternative views of MAP estimation

Highest-scoring (MAP) global hypothesis

Space of all global hypotheses

Highest-scoring (MAP) global hypothesis set

Highest-scoring (MAP) global
hypotheses in this subset

A subset of data-indistinguishable global
hypotheses



’ Hypothesis aggregation

* Aggregate over data-indistinguishable
global hypotheses

Enhanced MHT identifies Classical MHT assumes birth
optimal birth time interval occurs in preceding interval

B B |¢\tlme

measurement

* Aggregate over similar global
hypotheses

» Enhanced MHT recursion for merged and*

repeated measurements
Coraluppi and Carthel, IEEE T-AES 2018
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ot

— classical
enhanced

state [m]

0 25 30
time [sec]

Coraluppi and Carthel, IEEE T-AES 2014

2

_l r r r r r r r r r L
0 10 20 30 40 50 60 70 80 90 100
time [sec]

Coraluppi and Carthel, IEEE Aerospace 2012
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’ Context-aware tracking

* Types of context
— Aggregate patterns life
— Motion constraints
— Partial knowledge of target objectives (avoid detection, achieve mission, etc.)

Ground traffic

Maritime traffic Air traffic

-

* Approaches
— Modifying or augmenting sensor data
— Modify target dynamics, including Gaussian-mixture filters and particle filters
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* All available context and prior information should be exploited
— This is particularly beneficial in limited-coverage settings

* One approach to do so is to embed such information in a
nominal trajectory

’ Single-model context-aware tracking

Context-aware target model
Xdet

Conventional target model Plan or learned pattern

X

Nearly-constant velocity (NCV) 2" order OU process

X X
Actual

trajectory

N Actual
trajectory




’ Conventional processing Str

x10* 3. Error ellipses
> —— exhibit cubic
4l zgzﬂl growth in
tracker positional
uncertainty
1. Good tracking (consistent with
in area of good NCV model)
coverage
4, Target
reacquisition
(with mostly
2. Track incorrect
extrapolation association,
where data is despite principled
absent (tracks are i MHT likelihood
not terminated 5 L . . . . . . . . . scoring)

due to known 0 2 4 6 8 10 12 14 16 18
coverage gap) <107



Context-aware processing

10%
5
— — —-plan
4r actual
enhanced tracker
3 -

1. Good tracking 2L

in area of good \
coverage

2. Track extrapolation
where data is absent -2
maintains bounded
uncertainty and
exploits nominal flight-
plan information

3. High-accuracy
target
reacquisition

c.'.an-cLa\

10"



’ Single-model context aware tracking

 |n simulations with N targets and large coverage
gaps, probability of correct association (PCA)
with data association processing degrades to the ..

performancle lower bound 08l Generalized OU model
— PCA =~ — 07 /
N 06 [
: . : <’
 Use of generalized Ornstein-Uhlenbeck filters S os
leads to a substantial performance gain S o
— When coverage is good, tracking performance is F os NCY model
similar to conventional processing 02 Y
— When coverage is poor, track filters give more 01
weight to context, maintaining bounded and J : : : - - .

statistically-consistent uncertainty
— Resulting target reacquisition is greatly facilitated

Coverage gap [tens of km]
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, Multiple-model context-aware tracking 5[1'/

* Uncertainty is decoupled across multiple filter modes

Weighted Position Error

I HVT in Sensor FOV
. ——0U Model
Large error before reducing to ——NCV Model

smaller better-localized mode set

Position Error (km)
=

0 10 20 30 40 50 60 70
Time (hours)

Weight of Correct OU Path Estimate

Mode Weight

Benefit of negative informationT

Coraluppi et al., AEROCONF 2021

| | |
20 30 40 50 60 70
Time (hours)
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’ Distributed tracking .

 Centralized tracking is optimal given no
processing constraints

* Empirical advantages of distributed tracking

— Robust to detection fading and measurement
biases

— Effective for limited-observability sensors or
highly-disparate sensors (track before fuse)

— Robust to high frame rate (track before track) or
large networks of degraded sensors (fuse before
track)

— Enables asynchronous data association

MHT

MHT

f

Distributed processing

MHT

Y

MHT

>

cautious

aggressive



’ Avoiding distributed estimation

* Objects of interest are sequences of associated measurements

— Enables modularity, avoids track-correlation issues, allows for (static)
measurement fusion, allows for stage-specific target & sensor models

 All modules perform object association
— Breakage logic provides robustness

* Flexible connections between modules are possible
— Track breakage, track suppression, multi-look processing, etc.

—— > MHT g MHT —— — Tracks
> — Untracked measurements

Multi-look processing



’ A single-sensor GMTI tracking example

Static fusion

High-confidence tracking Track stitching

250 L ; redundant | 250 | \€ Short | 250 ‘ Séitche‘d.
L hitetums | | . tracklets | | : & tracks |
o f— 5 _
100 | & v 00| mh100 SEAN -
- ﬁ’ e \ . . AN ] PR ]
Single . /‘ . N £
[ returns 1 I 1
-50 ¢ i 50t : 1 S0 . L
0 400 550 200 400 550 200 400 550
‘ Track suppression
1500 _@T-' ,!..'ﬂ'.._--... .“*—-’:‘ - __... .@
a2 Sl AT fpe S
BB gt e
:,: .:."\» .") -
e SN "-'~;i;"q & \ i
T A
T e | o
: Caer. A
A [F 7 R
1000} : ..“ % "} : i : ——quad Il dismount
. s " Iy: = .:‘ 2 = —qua:l\/dlsmuun(
w0l \ I S ke % —
. % . artifacts dit bike " " " \ "
I8 i i ‘ i 72 T —— tiag dismount unaugmerted [8.189 24819 248191 28192 248198
—tracks

Coraluppi et al., NSSDF 2016
| Metric | MHT | Non-MHT | STRMS-MHT |

Excellent benchmark

Combined Target Completeness 0.51 0.28 0.63
116 117 87
resu l'ts com p are d to Average Track Life (frames) 172.97 116.60 273.85
@) t h er so |_U t| Oons Combined Track Completeness 0.85 0.68 0.89
0.40 059 0.34
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’ Hierarchical tracking

* Relevant to passive sonar & radar

— Address observability and repeated-measurement
challenges

— Decouple challenges of clutter suppression,
localization, and target-level tracking

— Allow for architectural tradeoffs

Msmt. | Tracks
Sensorl —
MHT
. Entity Target
Architecture 1 MHT 1 omer Fused tracks
Msmt.
Sensor2 ——
MHT | Tracks
Sensor 1 Msmt. | Target
MHT MHT
Architecture 2 T:Arﬁit — Fused tracks
Msmt. | | Target
Sensor2 —— MHT MHT

0.85 performance as a function of feature information
. T . T T T T T : T

0.8

0.75
0.7 |
<
O 0.65
o
0.6
0.55

0.5

0.45

. . . I . . I . .
0 5 10 15 20 25 30 35 40 45 50
feature information (ratio of msmt range, msmt std dev)

] performance as a function of kinematic information

Architecture 1
Architecture 2

0.9 r

0.8 |

0.7 |

0.6

PCA

0.5

04 r

03

0.2

0.1

1 1 1 1 1 1 1 1 1 I
0 5 10 15 20 25 30 35 40 45 50
kinematic information (ratio of msmt range, msmt std dev)

Coraluppi et al., FUSION 2021




Multi-INT fusion

e Distributed MHT is insufficient

— Asynchronous MHT provides some improvement
(Coraluppi et al, IEEE Aerospace 2016)

 Hypothesis-oriented MHT can be simplified
INn Mmany ways
— Hybrid scheme exploits elements of MHT and
classical graph-based tracking (GBT)

— The essential simplifying assumption in GBT:

f(zelz*1) = f(zp|2k—1)

Assumptions General Partially Markov data Markov data
General HO-MHT not investigated Viterbi
(Reid 1979) (Wolf et al. 1989)
Poisson targets TO-MHT Graph-based fusion (GBF) GBT

and clutter (Kurien 1990) (Coraluppi et al. FUSION

(D. Castanon 1990)

Sparse identity
information

Kinematic- L o 2 3
based tracks 1 Py
.

Significant track
e overlap / confusion

. .4 05

551

clairvoyant
sequential
asynchronous

=]
=
T

=onnn glairvoyant smoothed
seqguential smoothed
=+ @synchronous smoothed

w = .
=] o )
! T T

average positional error (m)
[#5]
(=]
;

2 3 4 5 6 7 8 9 10
number of sensor scans

2016) (G. Castanon et al. 2011)
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’ GBF Illustration

* Scenario: color indicates identity
data

A C
space .A 1 3 [
Lo > 4
time N
| | |
» GBF representation is compact ~ *Igp® Nutewgeen o SwbarenG

and nearly lossless

(§cEcO®Ec@§cOCEcC




’ GBF vs. MHT performance (notional)
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 MHT has slightly better performance that GBF for a given n-scan
* GBF has lower computational effort than MHT for a given n-scan

Performance

Operating points

»

Complexity

pothesis deptH

T ]
U P R

Hypothesis depth

performance
gain

processing
constraint

¢

GBF

S

C 4

40]

E

S MHT
)

o

Complexity

Empirical results in: C. Carthel, J. LeNoach, S.

Coraluppi, A. Willsky, and B. Bale, FUSION 2020
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’ Issue #1: upstream errors

MHT | generates IA, IB
MHT |l generates lIA, IIB
MHT Il initially forms [lIA, IlIB, only to detect

anomaly

Simple corrective action incurs fragmentation

1A

MHT |

MHT Il

MHT [l

I1IC
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Issue #2: cautious first stage 5[1'/

o Difficult to enforce track breaks at relevant times

. . . Sparse identity » MHT
information
e . > MHT [—
N » . ,
¢ *s o o identity
Kinematic- L ° o measurements
based tracks 4 °
o/® © ouy .
° » ° ® e Significant track
@ =
overlap / confusion
° ® /e '°® p/
“ ® [ °
» ° .
[t * o
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’ Issue #3: variable quality sensors

* Need for principled track fusion logic

Upstream tracker |

Upstream tracker I \

~_
.
\

False tracks
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’ Issue #4: non-fusion decisions

* How to revisit a non-fusion decision
1A

N

1A
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’ Issue #5: upstream fragmentation

 How to relax association constraints

/\‘__>\’

Temporally-overlapping tracks
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’ Issue #6: wide-area tracking

 How to contend with multiple uses of the same

measurement
| — MHTI
Region | Region [l
— MHTIl
- MHT |—
— MHT Il —
Region || Region [V
— MHTIV [




’ Issue #7: distributed sensor networks

* How to contend with incompatible association
decisions

m Track IIA
@.@ sl f

Track IlIA




’ Simplified distributed tracking

* The issues identified above can be mitigated by ignoring
upstream association decisions

* A potentially better approach: introduce track label as a
feature state in downstream tracking

— One such state for each upstream tracker

Xk
— %, = | L
L

11,k

— MHTI

— MHTII

MHT I
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’ Recovery from upstream error

* Input track breakage is account for in fused-track score
* No fused-track fragmentation

A

_ /,\

1IB
1B



’ Fusion of fragmented tracks

* No hard constraint to invalidate fused-track continuity

(Fused) Track IIA associates measurements from Tracks IA & IB
Discarded measurement

Track IA

\ /7 N

Track II;#/ — - —©

® Sensor measurement

O Track coast



’ Distributed tracker modeling

» Leverage Mori Chang Chong (MCC)
exponential model for probability of
correct association (PCA)

* Assume process noise governed by
two-state Markov chain with g, €

{qu: thgh}

8

7+

expected track lifetime [hrs]

[}
T

&)
T

—— one-stage MHT
two-stage MHT | |

107 107
false alarm density

S. Coraluppi et al., FUSION 2024

Clutter
density 5 MHT
— —
Qave
o
M
[ )
([
° (]
o
Clutter Clutter
density B | MHT Density 8 | MHT
Qiow Qnigh

v



’ Summary

* Multi-target tracking (MTT) is an essential component of many
automated surveillance capabilities
— Multiple-hypothesis tracking (MHT) is the leading operational approach to MTT
— Graph-based tracking (GBT) is a fast, approximate version of MHT

* There is significant empirical evidence of the performance and
robustness benefits of distributed MHT
— There is a large design space of fusion architecture, connectivity, and modules
— Calibrationis required for downstream processing stages

— Some undesirable effects are due to the hard constraints posed by upstream
data association decisions

» A simplified distributed tracking paradigm relaxes upstream data
association hard constraints

— Track label may be posed as a target feature state
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