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Introduction
 Estimation algorithms are most often designed and analyzed as unbiased estimators.

 Cramer Rao Lower Bound (CRLB) is for unbiased estimators (biased version exists, but not 
commonly used)

 For an unbiased estimator, the covariance generated by the estimator correctly characterizes 
the performance of the estimator.

 Kalman filter provides the minimum variance, unbiased estimate of the state of a 
system defined by 

with measurements by 

1  k k k k kX F X G v

k k k kZ H X w 

State at time k+1 includes position, 
velocity, and possibly acceleration*

White Gaussian errors for system state 
process or maneuvers  ~ 0,k kv N Q

Constraint on the kinematic motion

White Gaussian errors in the 
measurements  ~ 0,k kw N R

2023 IEEE AESS Distinguished Lecture Slide 4 of 64

Introduction
 For tracking maneuvering targets, maneuvers are models as a white noise random process, while 

target maneuvers tend to be highly correlated or deterministic errors. 
 Since the error covariance of the Kalman filter tends to be inconsistent for highly maneuvering 

targets, optimal filter design (i.e., selection of the process noise variance) is not immediate.
 Targets are not maneuvering:  Covariance is too large!
 Targets are maneuvering:  Covariance is too small!

 Process noise variance is often selected to be as small as possible while providing acceptable 
performance during maneuvers.  How small is too small?

 Process noise variance can be selected sufficiently large to provide good performance during 
maneuvers. How large it too large?

 During maneuvers, the NCV Kalman filter is a biased estimator.  
 Treating the Kalman filter as an unbiased estimator with a covariance is invalid.
 Mean Squared Error (MSE) is the correct performance metric, but only covariance is calculated.
 Maximum MSE (MaxMSE) can be computed for target maneuvering with maximum acceleration          .  
 Minimum MaxMSE (MinMaxMSE) can be used as a filter design criteria. 
 MaxMSE <  Measurement error variance is a second design criteria.

 Nearly Constant Acceleration (NCA) filters can be designed similarly. 

max(A )
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Target Tracking Process

Uncertainty in 
the Predicted 
Position

MEASUREMENT

PREDICTED 
POSITION

FILTERED 
POSITION

Range Cell

3 dB 
Beamwidth

Uncertainty in 
the Position 

Estimate

Uncertainty in 
Threat Velocity 

Estimate
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Tracking Maneuvering Targets

MEASUREMENT

PREDICTED POSITION

FILTERED POSITION

Target Maneuvers
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Tracking Maneuvering Targets

MEASUREMENT

PREDICTED POSITION

FILTERED POSITION

Target Continues Maneuver

Target is lost and track 
will be dropped!!!
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Tracking Maneuvering Targets

MEASUREMENT

PREDICTED POSITION

FILTERED POSITION

Target Maneuvers

How do you select the process noise variance?

Track can be maintained by using a larger 
process noise variance and looking earlier
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1 1Stationary Target:       k k k k kX x x F X   

Target Motion Models

Velocity is modeled to remain fixed

Acceleration is modeled to remain fixed

Typical forms of a state vector at time k for tracking a target in a scalar coordinate x 

1Constant Acccleration Target:  = k kx x 

1 1
1

1

1
        

0 1
k kk k

k k k
k k

x xt t
X F X

x x
 




    
      

     

Position is modeled to remain fixed

Higher order models add complexity and 
computational cost to the filter, with 
little or no benefit or even, sometimes 
with degraded performance.

1Constant Velocity Target:     k kx x  

2
1 1 1

1 1 1

1

1 0.5(t )

      0 1

0 0 1

k k k k k k

k k k k k k k

k k

x t t t x

X x t t x F X

x x

  

  



     
           
        

 
 
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 Typical forms of a typical state vector at time k for tracking a target  are 

 The estimate of the state at time k given measurement to time j denoted as

 
 
 

                     stationary target 

           constant velocity target

    constant acceleration target

kk

T
k kk

T
k k kk

xX

x xX

x x xX









 

|

| 1

| 1

 = denotes the filtered state estimate

 = denotes the one-step predicted state estimate

 = denotes the one-step smoothed state estimate

k k

k k

k k

X

X

X





| | | | | || | |              
T T

k j k j k j k j k j k jk j k j k jx x x x x xX X X              

Track Filter Basics
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 Mathematics tells us that you can draw a straight line through any two points.

 In practice, we as engineers know that you can draw a straight line through 
any three points.

 You just need a sufficiently wide pencil.

Track Filtering: Mathematics Versus Engineering

Constant Velocity (CV) or Constant Acceleration (CA)?

First and only contribution to answering this question is presented in 
W. D. Blair and Y. Bar-Shalom, “On the NCA Versus NCV Models in Tracking of Maneuvering 
Targets,”  Proceedings of the 2023 IEEE Radar Conference, San Antonio, Texas, May 2023
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NCV filter is the most widely used for target tracking.

Motion model:

Measurement model: 

 2
1

11
1 1 1 1 1

1
1

1
20 1

k k
k kk k

k k k k k k
k k

k k

t tx xt t
X F X G v v

x x
t t




    




                        
 

 1 0 k
k k k k k k

k

x
z w x w HX w

x

 
      

 

where            is zero-mean                   with variance        kw   0kE w 
2
ncvis zero-mean                   with variance        kv

2
w

  0kE v 

Nearly Constant Velocity (NCV) Motion Model with Discrete White 
Noise Acceleration (DWNA)

Time  difference multiplied by 
acceleration error between tk and tk-1 

gives a velocity error

Time difference squared/2 multiplied by 
acceleration error between tk and tk-1 gives 
a position error

Sensor measures only position at time tk

Acceleration error from tk-1 to tk

Measurement errors in position at time tk

Derived from sensor signal-to-noise ratio

Design parameter How do we pick it?
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NCV Filter Design for Filtered Position

 Given

 Let 

 For MinMaxMSEpos for a sustained maneuver

 Subject to the minimum

1 1 max 1
max

      ( )pos posDWNA ncv
ncv D

D

A
A

   
     



Selecting the Process Noise Variance [12]

4 2 4 2 2
2 2max

2 2
         

1
ncv

D DWNA
w w

T A T  
  

    


2,max
1 ( ) 1.69(0.66) (1.03) ,  0.001 10,    where      log10( )D Dpos

D D D D         

2,min
1 ( ) 0.87(0.90) (0.97)  , 0.001 10D Dpos

D D      
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NCV Kalman Filter: Selecting the Process Noise Variance [12]

2
max

2

1 max

Example:

40 m/s

  120 m

    1 s

1 (40)
   =0.33

120

 =    

w

D

pos
ncv

A

T

A



 







 

max

2
max

maximum acceleration of the target

  standard deviation of measurement errors

    measurement period 

      

w

D
w

A

T

T A











 

max ,max
1 max 2.1*40 84pos

ncv A   

min ,min
1 max 0.92*40 36.8pos

ncv A   

W. D. Blair and Y. Bar-Shalom, “MSE Design of Nearly Constant Velocity 
Kalman Filters for Tracking Targets with Deterministic Maneuvers,” IEEE 
Transactions on Aerospace and Electronic Systems, March 2023.

W. D. Blair, “Design of Nearly Constant Velocity Filter for Brief Maneuvers,” Proceedings 
of the 2011 International Conference on Information Fusion, Chicago, IL, July 2011

Design 
Region

How do we pick    ?

  

1   pos
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Computer Simulations: Example 1

Position Errors Velocity Errors

Smaller process noise variance gives errors for maximum 
maneuver that approximately equal to the measurement errors. 

Larger process noise variance minimizes the average maximum 
mean squared errors during maximum maneuver.

Consider Monte Carlo Simulations of target that maneuvers at 40 m/s2 from 40 to 60 s. 
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NCV Radar Tracking with LFM Waveforms

k k k kz r t r w   
For radar range measured with an LFM waveform, the measured range is given by

where

System is defined by

According to [6,7,8], filter performance is specified by   

0

1 0

f
t

f f


 


0 initialcarrier frequencyf  waveform duration 
1 finalcarrier frequencyf 

 

 

2
2

2 2 2
2 2 max

2 2

1
            

0 1 2

         =                c =       1

T
k k k

T

v

ncv
r w DWNA RD D

w w

x r r

T TF G QT

T T At
H Rt

T



 
 



          


     



  and .DWNA RDc
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NCV Radar Tracking with LFM Waveforms [6]

1, max   ncv rdc A 

Positive        allows for 
smaller process noise variance 
for MinMaxMSEpos

RDc

Positive        allows for 
smaller overall process 
noise variance

RDc
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NCV Radar Tracking with LFM Waveforms
Selecting the Process Noise Variance

a0 a1 a2

1.0 1.05 0.29 0.73

1.0 0.30 0.38 0.79

0.5 1.33 0.36 0.75

0.5 0.43 0.44 0.79

0.1 1.64 0.57 0.94

0.1 0.69 0.62 0.84

1, max pos
ncv rdc A 

2,max max max max
5, 0 1 2( , ) ( ) ( )    

where  log( )

D Dpos
rdc D RD

D D

c a a a   

  
2,min min min min

5, 0 1 2( , ) ( ) ( )  D Dpos
rdc D RDc a a a   

,max
5, 1
pos

rdc 

,min
5, 1
pos

rdc 

,max
5, 0.5
pos

rdc 

,min
5, 0.5
pos

rdc 

,max
5, 0.1
pos

rdc 

,min
5, 0.1
pos

rdc 

RDc

2023 IEEE AESS Distinguished Lecture Slide 20 of 64

NCV Radar Tracking with LFM Waveforms

Positive                 allows for much 
smaller MinMaxMSEpos

1.0RDc 

For highly maneuvering targets, LFM 
waveforms are required to achieve error 
reduction in range. 

Error reduction due to the use of an LFM 
waveform is in range only. 

Mode estimation in the IMM Estimator in 
three dimensions is meaningfully 
improved by the use of LFM waveforms.
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Motion model:

Measurement model: 

 22
11

1
1

1 1 1 1 1 1 1 1

1

( )
1

2 2
0 1

0 0 1 1

k kk k
k k

k k

k k k k k k k k k k k k

k k

t tt t
t tx x

X x F X G v t t x t t v

x x






       



   
                                    

     

 
 

 1 0 0
k

k k k k k k k

k

x

z x w x w HX w

x

 
       
  




where            is zero-mean                   with variance        kw   0kE w 
2
ncais zero-mean                   with variance        kv

2
w

  0kE v 

Nearly Constant Acceleration (NCA) Motion Model

Acceleration error 
from tk-1 to tk

Design parameter How do we pick it?
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Design of NCA Track Filter [9]

3 max   nca A 

Process noise should always be less than 
the maximum acceleration and that fraction 
decreases as the       decreases.D

2 3 4max
3 ( ) 0.6(1.62) (0.921) (0.922)  (0.983)   

where  log( )

D D D D
D

D D

     

  
2 3min

3 ( ) 0.223(2.69) (0.877) (0.941)   D D D
D    

As a rule of thumb, picking                     will ensure that the 
estimation errors are not worse than the measurement errors.

max0.5nca A 

2023 IEEE AESS Distinguished Lecture Slide 24 of 64

Design of NCA Track Filter [9]
3 max   nca A 

2 3 4max
3 ( ) 0.6(1.62) (0.921) (0.922)  (0.983) ,   where  log10( )D D D D

D D D        
2 3min

3 ( ) 0.223(2.69) (0.877) (0.941)   D D D
D    

2
max

2

3 max

Example:

40 m/s

  120 m

    1 s

1 (40) 1
   =

120 3
 =    

w

D

nca

A

T

A



 





 

max max 2
3 ( ) 0.475 19 m/sD nca    

min min 2
3 ( ) 0.135 5.4  m/sD nca    
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Example 2: Tracking with NCA Filter
Consider Monte Carlo Simulations of target that maneuvers at 40 m/s2 from 40 to 60 s. 

Smaller process noise variance gives errors 
for maximum maneuver that approximately 
equal to the measurement errors. 

Larger process noise variance minimizes the 
maximum mean squared errors during 
maximum maneuver.
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NCV Filter Versus NCA Filter

Consider Monte Carlo Simulations of target that maneuvers at 40 m/s2 from 40 to 60 s. 
Both the NCV and NCA filters have essentially the  same MaxMSEpos.

Both the NCV and NCA filters 
have the  same errors when 
the target is not maneuvering.

2   Design Criteriapos
wMaxMSE 

Note that degraded tracking 
persists after the maneuver ends.
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NCV Filter Versus NCA Filter

Consider Monte Carlo Simulations of target that maneuvers at 40 m/s2 from 40 to 60 s. 
 Design CriteriaposMinMaxMSE

Both the NCV and NCA filters 
have the  same MaxMSEpos

Both the NCV and NCA filters 
have the  same errors when 
the target is not maneuvering.

Note that degraded tracking 
persists after the maneuver ends.
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Measurement at time k is given by

where:

 

2 2 2

1

1

2 2

tan

tan

k k k
k

k
k k k k

k
k

k

k k

x y z
r

y
Z a h X

x
e

z

x y





 
 
    
                       

kr

ka

ke

kX

=  measurement of target range
=  measurement of target azimuth

=  measurement of target elevation

=  target state vector =   Tk k k k k kx x y y z z  

 , ,k k kx y z = coordinates of the target position , ,x y z

Radar Measurements: Spherical Coordinates

Track Filtering: Radar Measurements
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 sin Az

 sin El

   sin cos  

   sin cos  

 cos 

Array Face
Coordinates

Sine
Space

x

r


y

r


z

r


2 2 2x y z 

xk

yk

zk

r

Sine Space 3-D

Track Filtering: Radar Measurements
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Consider the nonlinear system state

with observations

where:

1 1 1 1k k k k kX F X G v    

 k k k kZ h X w 

kX = System State

kw = White Gaussian errors in the measurements process with  ~ 0,k kw N R

kv = White Gaussian errors for system state process with  ~ 0,k kv N Q

Extended Kalman Filter (EKF) for Radar Tracking
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Measurement Update:

where:

Time Update:

1 1[ ( )]k k kk k k k k kX X K Z h X   

11 1 1kk k k kX F X  

1 1 1 1 11 1 1
T T

k k k k kk k k kP F P F G Q G       

1
1 1[ ]T T

k k k k kk k k kK P H H P H R 
  

1 1 1[ ]k k k kk k k k k k k kP I K H P P K H P     

1

( )

k k k

k k
k

k X X

h X
H

X







Algorithm

Track Filtering:  Extended Kalman Filter (EKF) for Radar Tracking 
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Filter Design of EKF for Radar Tracking 
 Radar measurement errors are approximately stationary in range and angle 

coordinates
 Range measurement errors are nearly stationary in crossrange with the variance 

smoothly change with range of the target. 
 Track filter design for radar tracking is performed in range and crossrange

 Range only track filter designed using scalar methods for supporting signal processing.

 3D (i.e., Cartesian x, y, z) track filter is designed using variance of crossrange errors for 
selection of the process noise variance versus range.

2
maxRange Filter: =  
3

D

r

T A




 

2
max3  Filter :   =  

3 max ,
D

az el

T A
D

r  

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Scenario 1 – Target Trajectory
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Scenario 1 – Target Trajectory
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Scenario 1 – Target Trajectory
14 s Maneuvers 10 s Maneuvers
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Example 3: Two NCV Filters with DWNA
Monotone Monopulse Radar – Minimum Process Noise Variance  (Sim 1)

2min ,min ,minmax
1 1

5 m, 1 mrad, 1 mrad,   1 s

NCV Filter with Discrete White Noise Acceleration (DWNA) 

     where  ( ) 0.87(0.9) (0.98) ,     = log10( )
3

3  Filter :   =

D D
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pos pos
ncv D D D
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   

    


 

2 2
max max ,   Range Filter: =  

3 max , 3
D
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A T A

r   


 

2max ,max ,maxmax
1 1

2
max

5 m, 1 mrad, 1 mrad,    1 s

NCV Filter with DWNA

    where  ( ) 1.69(0.66) (1.03) ,     = log10( )
3

3  Filter :   =  ,   Range Filter: 
3 max ,

D D

r az el

pos pos
ncv D D D

D

az el

T

A

T A
D

r

  

  

 

 

   

    


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3

D

r

T A


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Monotone Monopulse Radar  - MinMaxMSEpos (Sim 2)
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Example 3: Two NCV Filters with DWNA
Peak errors for Sim 1 are slightly less 

than the measurement errors of 120 m 
at the maximum maneuver.

Peak errors for Sim 1 are notably less 
than the measurement errors of 160 

m at ¾ maximum maneuver.
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Example 3: Two NCV Filters with DWNA 

Normalized RMSE for position and 
velocity shows that the state 

covariance is too large except when 
maneuvers are present and the smaller 

process noise variance in Sim 1.
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Example 3: Two NCV Filters with DWNA
MinMaxMSEpos is the measurement error in range. No NCV 
filter will provide error reduction for a monotone waveform. 

Note that the peak errors are similar for both 
cases, but the errors for Sim 1 are less when 

the target is not maneuvering.
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Example 4: Two NCV Filters for Monotone Versus LFM
 Monotone Monopulse Radar – MinMaxMSEpos (Sim 1)

 LFM Monopulse Radar  - MinMaxMSEpos (Sim 2)

2

max ,max max
,rdc 1 5,rdc 1

,max
5,rdc 1

5 m, 1 mrad, 1 mrad,   1 s

Range-Doppler-Coupling Coefficient (rdc) = 1.0

NCV Filter With DWNA

Range:      
3

where  ( ) 1.05(0.29) (0.73) ,D D

r az el

pos
ncv

pos
D

T

A

  

 



 

 


   



 
2

max     = log10( ),   =  
3

D D D

r

T A


  

2max ,max ,maxmax
1 1

5 m, 1 mrad, 1 mrad,   1 s

NCV Filter with Discrete White Noise Acceleration (DWNA) 

     where  ( ) 1.69(0.66) (01.03) ,     = log10( )
3

3  Filter :   

D D

r az el

pos pos
ncv D D D

D

T

A

D

  

    

   

    


 

2 2
max max=  ,   Range Filter: =  

3 max , 3
D

az el r

T A T A

r   

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Example 4: Two NCV Filter Designs for Monotone Versus LFM
MinMaxMSEpos is the measurement error in range for the NCV Kalman filter with 

monotone waveform.  Measurement error is reduced with LFM waveforms.
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Example 5: Two NCA Filters with DWPA
 Monotone Monopulse Radar - Minimum Process Noise Variance (Sim 1)

 Monotone Monopulse Radar  - MinMaxMSEpos (Sim 2)

2 2min min minmax
1, 1,

5 m, 1 mrad, 1 mrad,   1 s

NCA Filter With Discete Wiener Process Acceleration

     where  ( ) 0.223(2.69) (0.877) (0.941) ,     = log10( )
3
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3 3

5 m, 1 mrad, 1 mrad,   1 s

NCA Filter With Discete Wiener Process Acceleration

    where  ( ) 0.6(1.62) (0.921) (0.922) (0.983) ,     = log10( )
3

3  Filter : 

D D D D

r az el

nca D D D

T

A

D

  

      

   

    

 

2 2
max max  =  ,   Range Filter: =  

3 max , 3
D D

az el r

T A T A

r   
 

2023 IEEE AESS Distinguished Lecture Slide 44 of 64

Example 5: Two NCA Filter Designs with DWPA
Peak errors for Sim 1 are slightly less than the 

measurement errors of 120 m at the maximum maneuver.
Peak errors for Sim 1 are notably less than the 

measurement errors of 160 m at ¾ maximum maneuver.
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Example 5: Two NCA Filter Designs with DWPA
Normalized RMSE for position and velocity shows that the state covariance is too large except when maneuvers 

are present. The smaller process noise variance in Sim 1 gives poor inconsistency during maneuvers
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Example 5: Two NCA Filter Designs with DWPA
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Example 5: Two NCA Filter Designs with DWPA
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Outline
 Introduction

Overview of Target Track Filtering

Nearly-Constant Velocity (NCV) Track Filter Design

Nearly Constant Acceleration (NCA) Track Filter Design

 Track Filter Design for Radar Tracking of Maneuvering Targets

 Filter Design and IMM Estimator

Concluding Remarks
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Consider the system state

with measurements

   1 1 1     k k k k k k kX F X G v

 k k k k kZ H X w  

Multiple Model Tracking of Maneuvering Targets

This model for maneuvering targets does not lead to multiple 
Kalman filters operating in parallel and picking the best!!!

Pointer to one of N models

1 k is finite state Markov Chain with pij probability of switching 
from model i to model j

1

1

   Example: N = 2 models

=1 Constant Velocity

=2 Accelerating
k

k





 

 
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X

IMM Algorithm with Two Models
Interacting Multiple Model (IMM) Estimator

X

Measurements

Model 2
State Estimate 

and Covariance  

Interaction (mixing)

Model 1
Filter

Model 2
Filter

State Estimate 
and Covariance  

Model 
Probability 
CalculatorModel Likelihood

Mixed Estimates

Blend
Estimates 

Wait on 
measurement

X

Model 1
State Estimate 

and Covariance  Probability
of Models

Prior Estimates
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Example 6: NCV Versus IMM CVCA
 Monopulse Radar – Minimum Process Noise Variance Design of NCV (Sim 1)

 Monopulse Radar  - IMM CVCA with Minimum Process Noise Variance Design for NCA Filter (Sim 2)

2min ,min ,minmax
1 1

5 m, 1 mrad, 1 mrad,   1 s

NCV Filter with Discrete White Noise Acceleration (DWNA) 

     where  ( ) 0.87(0.9) (0.98) ,     = log10( )
3

3  Filter :   =

D D
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ncv D D D

D
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T
D
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    
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
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2 2
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D
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A T A
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min 2

min min minmax
3 3

5 m, 1 mrad, 1 mrad,   1 s

Model 1: NCV Kalman filter with 1 m/s

Model 2: NCA Filter With Discete Wiener Process Acceleration

     where  ( ) 0.223(2.69) (0
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

  

 

2 3

2 2
max max

11 12 11 22 21 22

.877) (0.941) ,     = log10( )

3  Filter :   =  ,   Range Filter: =
3 max , 3

p 0.9 0.1exp( / 2.0),   1 ;  p 0.8 0.2exp( / 2.0),   1  

D D
D D

D D
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T A T A
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T p p T p p
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 
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Example 6: NCV Versus IMM CVCA

Peak errors approach the measurement errors when 
target maneuvers with maximum acceleration
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Example 6: NCV Versus IMM CVCA
Normalized RMSE for position and velocity shows that the 
state covariance is too large except when maneuvers are 

present in Sim 2.
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Example 6: NCV Versus IMM CVCA



28

2023 IEEE AESS Distinguished Lecture Slide 55 of 64

Example 6: NCV Versus IMM CVCA
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Example 7: NCV Versus IMM CVCA
 Monopulse Radar – MinMaxMSEpos NCV Filter Design (Sim 1)

 Monopulse Radar  - IMM CVCA with MinMaxMSEpos NCA Filter Design (Sim 2)
min 2

max max maxmax
3 3

5 m, 1 mrad, 1 mrad,   1 s

Model 1: NCV Kalman filter with 1 m/s

Model 2: NCA Filter With Discete Wiener Process Acceleration

    where  ( ) 0.6(1.62) (0.92
3
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   
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D D D
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1 1
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5 m, 1 mrad, 1 mrad,    1 s

NCV Filter with DWNA

    where  ( ) 1.7(0.66) (1.02) ,     = log10( )
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Example 7: NCV Versus IMM CVCA

Peak errors are minimized
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Example 7: NCV Versus IMM CVCA
Normalized MSE for position and velocity shows 

that the state covariance is too large except when 
maneuvers are present in Sim 2. 
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Example 7: NCV Versus IMM CVCA
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Example 7: NCV Versus IMM CVCA
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Outline
 Introduction

Overview of Target Track Filtering

Nearly-Constant Velocity (NCV) Track Filter Design

Nearly Constant Acceleration (NCA) Track Filter Design

 Filter Design for Radar Tracking of Maneuvering Targets

 Filter Design and IMM Estimator

Concluding Remarks
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Concluding Remarks

 Track filter is the workhorse of any advanced data association algorithm such as probabilistic 
data association filter (PDAF), multiple hypothesis tracking (MHT),  probabilistic MHT, (PMHT), 
or particle filter. 

 Poorly designed track filter will lead to degraded performance of your data association algorithm 
and false conclusions regarding relative performances:  Poorly tuned track filter will handicap 
your overall tracking.  

 Methods for designing NCV and NCA track filters allow for a desired performance to be achieved.
 MinMaxMSEpos

 MaxMSEpos less than measurement error
 Given the Deterministic Tracking Index      , maximum acceleration of the target        , and 

duration of maneuvers  in measurements, upper and lower bounds on the  process noise 
variance                 can be specified.

D maxA

2 2 or ncv nca 
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Concluding Remarks
 NCV Filter Versus NCA Filter

 If MinMaxMSEpos is the sole design criteria, NCV filter is the better option. 
 If maneuvers persist for a sufficient number of measurements to obtain a meaningful estimate of acceleration and improved 

tracking during a maneuver is desired, the NCA filter may be the better filter for your problem.
 For most all situations, NCA model should only be considered in an IMM estimator so that the transient error at the end of 

maneuvers is removed.

 More data does not always lead to better estimates if the filter is poorly designed.
 Effective design methods for algorithms are one of the most important needs in sensor netting.
 Sensor resource allocation: more measurements or better measurements? [11]

 Estimation Accuracy: better measurements
 Prediction Accuracy: more measurements 

 Use of LFM waveforms significantly improves the mode estimates of  an IMM Estimator in three 
dimensions.

 Additional design methods
 NCA Radar Tracking with LFM waveforms
 NCV and NCA radar tracking with FMCW waveforms
 Multisensor tracking
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