
NON-COHERENT DOA ESTIMATION W. Liu

Target Direction Finding and Localization with
Phaseless Measurements

Dr Wei Liu

IEEE AESS Distinguished Lecturer

Antennas and Electromagnetics Research Group
School of Electronic Engineering and Computer Science

Queen Mary University of London, UK

Email: w.liu@qmul.ac.uk; wliu.eee@gmail.com
https://sites.google.com/site/liuweipage

1



NON-COHERENT DOA ESTIMATION W. Liu

Outline

1. Motivation for Magnitude-only/Phaseless Measurements

2. Associated Ambiguities for Direction of Arrival (DOA)
Estimation

3. Group Sparsity Based Phase Retrieval for Direction
Finding

4. Target Localization Based on Distributed Array Networks

5. Conclusions

2



NON-COHERENT DOA ESTIMATION W. Liu

1. Motivation for Phaseless Measurements

• Target direction finding and localization is an important problem in
radar detection and estimation based on antenna arrays.

• Normally a full measurement (including both phase and magnitude) of
the received signals is needed for effective detection and estimation
and many classic direction of arrival (DOA) estimation algorithms are
based on this assumption, such as MUSIC and ESPRIT.

• However, this would need prior calibration of the whole array system
to remove any possible phase errors present in the measurements,
which may not be realistic in many practical scenarios and phase
errors are not avoidable as a result.
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1. Motivation for Phaseless Measurements

• To show the benefits of taking magnitude-only or phaseless
measurements, consider the following N -sensor uniform linear array
(ULA) as an example,

with distance d between adjacent sensors, and θ is measured from
the broadside of the array.
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1. Motivation for Phaseless Measurements

• With K incident signals, without model errors, the measurements at
the p-th time instant is given by (noise-free):

x[p] = A(θ)s[p], (1)

where x[p] = [x1[p], ..., xN [p]]T and s[p] = [s1[p], ..., sK[p]]T are the
received signal and source signal vectors, respectively, and A =
[a1, ...,aK] is the steering matrix of the array, with

ak = [1, e−j2π
d
λ(sin θk), ..., e−j(N−1)2π dλ(sin θk)]T . (2)

• For P snapshots, one has

X = A(θ)S, (3)

where X = [x[1], ...,x[P ]] and S = [s[1], ...,s[P ]].
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1. Motivation for Phaseless Measurements

• Now suppose there is an unknown phase error en at sensor n of the
array. Then,

X = EAS, (4)
where E is a diagonal matrix with its diagonal given by ejen.

• ejen could be corrected by some array calibration techniques;
however, it can be eliminated without calibration by simply taking the
absolute value of each received signal, i.e.

Y = |X| = |EAS| = |E||AS| = |AS| (5)

where | · | is the element-wise absolute value operator. So phase error
has been removed by magnitude-only measurements.

• Or we could directly design a system which only measures signal
magnitude and one good example is the Rydberg quantum sensor,
which only measures the intensity of an impinging electric field.
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1. Motivation for Phaseless Measurements

• Consider the more realistic case with uncorrelated additive noise

Y = |AS|+ N, (6)

where N is the noise matrix.

• A big question is, can we still perform effective DOA estimation?

• Actually this is a classic phase retrieval problem, where only
(squared) signal magnitude is available. The only difference is, in
traditional phase retrieval applications, such as optical imaging [1],
there is usually only one snapshot, while in the above model, multiple
snapshots are available.

• So group sparsity could be incorporated into existing phase retrieval
algorithms to solve the problem; however, due to loss of phase
information, there are inherent ambiguities for DOA estimation.
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2. Associated Ambiguities for DOA Estimation

• One general observation is, if there is only one impinging signal, then
there is no way to determine its direction as the magnitude of array
measurement with a single impinging signal will stay the same for all
N sensors, no matter which direction the signal comes from.

• To remove this ambiguity, we can simply put one arbitrary source to
a direction of convenient choice to make sure there will be at least
two signals present. Note that we do not need to know exactly which
direction this additional source comes from.

• However, it is difficult to have a further more general discussion about
ambiguities, as they are normally array structure dependent; next,
we will use the popular ULA as an example for our discussion and
introduce two array structures to tackle the issue.

• Three ambiguities are associated with a ULA: mirroring, spatial shift
and spatial order ambiguities, as explained in the following [2, 3].
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2. Associated Ambiguities for DOA Estimation

• Mirroring ambiguity refers to a mirrored version s∗ = [s∗1, ..., s
∗
K] of the

original signals from angle −θk would lead to the same magnitude
measurements as the original ones.

• Denote x̌n as measurements of the mirrored signal

|xn| = |x∗n| = |
K∑
k=1

s∗k(e
−jnα sin θk)∗|

= |
K∑
k=1

s∗ke
−jnα sin(−θk)| = |x̌n|

(7)

where ′∗′ represents complex conjugate and α = 2πdλ.

• Basically due to the sin θ term, this mirroring ambiguity will arise for
any linear array structure.
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2. Associated Ambiguities for DOA Estimation

• Spatial shift ambiguity refers to a spatially shifted version of the
original source from angle θk by an amount φ/α would still have the
same magnitude measurements as the original one.

• Denote x̌n as measurements of the shifted signal and θ̈k the shifted
DOA.

|xn| = |
K∑
k=1

ske
−jnα sin θke−jnφ| = |

K∑
k=1

ske
−jnα(sin θk+

φ
α)|

= |
K∑
k=1

ske
−jnα sin θ̈k| = |x̌n|

(8)
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2. Associated Ambiguities for DOA Estimation

• Spatial shift ambiguity will not affect the DOA order, i.e. with sin θ1 <
sin θ2 < ... < sin θK, we have sin θ̈1 < sin θ̈2 < ... < sin θ̈K.

• However, there is another ambiguity and we call it “spatial order
ambiguity”, as this ambiguity will change the spatial order of the
impinging signals, i.e. with sin θ1 < sin θ2 < ... < sin θK we can not
have sin θ̈1 < sin θ̈2 < ... < sin θ̈K.

• This ambiguity occurs when applying half-wavelength spaced ULA
to the full angle range [−90◦, 90◦] and cannot be solved by placing
known reference signal(s). But it can be avoided by limiting the
adjacent sensor spacing to λ/4.

• The analysis for this ambiguity is complicated and omitted here. For
detail, please refer to [4].
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2. Associated Ambiguities for DOA Estimation

• To avoid the ambiguities associated with the ULA structure, one
solution is to employ a dual array system [4, 5].

• It consists of two ULAs, where the first array is in the horizontal
direction, while the second has a known angle θ̌ to the first array.

• Due to the nonzero rotation angle, any shift or mirroring will lead to
inconsistency in the two sets of estimated DOA results.
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2. Associated Ambiguities for DOA Estimation

• Another choice is to employ the uniform circular array (UCA) [6].

• The UCA can be considered as multiple pairs of dual-arrays with
two sensors for each subarray and therefore can overcome the
ambiguities issue associated with a single ULA.
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2. Associated Ambiguities for DOA Estimation

• For the UCA, its steering vector is given by

a(θk) = [ejξ cos(θk−γ1), ..., ejξ cos(θk−γN)]T , (9)

where ξ = 2πr/λ, and γn = 2πn/N , n = 1, ..., N .

• For mirroring, signals arriving from −θk generate measurements
with the same magnitude from the original ones |xn| =

|
∑K
k=1 ske

jξ cos(θk−γn)|.

|x̌n| = |
K∑
k=1

s∗ke
jξ cos(−θk−γn)| = |

K∑
k=1

s∗ke
jξ cos(θk+γn)| 6= |xn|. (10)

• As the magnitude of x̌n is in general different from xn, mirroring
ambiguity will not appear.
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2. Associated Ambiguities for DOA Estimation

• For spatial shift, the received signals are phase shifted by a specific
amount φn,

x̌n = ejξφn
K∑
k=1

ske
jξ cos(θk−γn) =

K∑
k=1

ske
jξ cos(θk−θ̌n,k−γn). (11)

• Although x̌n would share the same magnitude as xn at the n-th
sensor, θ̌n,k for the corresponding k-th signal at different sensors are
different due to the non-linear property of the cos function and the
involvement of γn.

• This implies that, there is no common shift variable φn to
simultaneously keep the same magnitude as xn and same shifted
angle θ̌n,k for all N sensors.
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2. Associated Ambiguities for DOA Estimation

• But there is another ambiguity for UCAs. For the whole range [−π, π],
K incident signals s∗ from angle (θk ± π) would share the same
magnitude as xn, expressed as

x̌n =

K∑
k=1

s∗ke
jξ cos(θk±π−γn) =

K∑
k=1

s∗ke
−jξ cos(θk−γn) = x∗n. (12)

• As a solution, we can limit the area of interest to [−90◦, 90◦], since for
−π/2 ≤ θk ≤ π/2, θk ± π will exceed the limit.

• Actually this ambiguity happens to all two-dimensional (2-D) arrays
considering the full 360◦ range.

• The ULA would suffer from the same ambiguity, but it is ignored, as
for a ULA, the interested angle range is [−90◦, 90◦].

16



NON-COHERENT DOA ESTIMATION W. Liu

3. Group Sparsity Based Phase Retrieval for Direction
Finding

• Now based on the magnitude-only (non-coherent) measurement data
model as shown below, a fast group sparsity based phase retrieval
algorithm is developed [4].

Y = |X| = |AS|+ N. (13)

• First uniformly divide the whole angle range of interest into G � N
grid points, represented by angles θg, g = 1, 2, ..., G.

• Then, the array output under the sparse representation framework is
given by

Y = |ÃS̃|+ N,

Ã = [a(θ1), ...,a(θG)], S̃ = [s̃[1], ..., s̃[p]].
(14)
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3. Group Sparsity Based Phase Retrieval for Direction
Finding

• With the sparse representation, the non-coherent DOA estimation
problem can be formulated as a group sparse phase retrieval problem

min
S̃
‖|ÃS̃| − Y‖2F + γ‖S̃‖2,1, (15)

where γ is a trade-off factor between the two terms.

• Note that ‖|ÃS̃| − Y‖2F is non-convex and the problem cannot be
solved directly.

• By applying the PRIME technique column by column to (15) [7], this
non-convex problem can be majorised by a surrogate convex function
as

min
S̃
‖ÃS̃− Cq‖2F + γ‖S̃‖2,1 with Cq = Y� ejarg(ÃS̃

q
). (16)
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3. Group Sparsity Based Phase Retrieval for Direction
Finding

• The above problem can be readily solved by the proximal gradient
method [8, 9]; at the (q+1)th iteration, S̃

q+1
is given by (µ is stepsize)

S̃
q+1

= argmin
Z
{‖ 1

2µ
‖Z− (S̃

q
− µ∇F (S̃

q
))‖2F + γ‖Z‖2,1}. (17)

• It has an analytical solution as [9, 10]

s̃q+1
i = (s̃qi − µ∇F (s̃qi )) max(1− γµ

‖s̃qi − µ∇F (s̃qi )‖2
, 0), (18)

where s̃i represents the i-th row of S̃ and∇F (s̃qi ) = 2(Ã
H

)i(ÃS̃
q
−Cq),

i = 1, · · · , G, is the i-th row of ∇F (S̃
q
), with (Ã

H
)i being the i-th row

of Ã
H

.
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3. Group Sparsity Based Phase Retrieval for Direction
Finding

• Nesterov acceleration can be applied to increase the converge
speed [11].

• This method does not apply proximal operator to S̃
q+1

directly, but
another point Bq+1 based on S̃

q+1
and S̃

q
expressed as

Bq+1 = S̃
q+1

+
βq − 1

βq+1
(S̃
q+1
− S̃

q
), (19)

where

βq+1 =
1 +

√
1 + 4(βq)2

2
. (20)

• The proposed algorithm is referred to as fasT grOup sparsitY Based
phAse Retrieval (ToyBar) [4].
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3. Group Sparsity Based Phase Retrieval for Direction
Finding

Algorithm Summary (ToyBar)
Input: Ã, Y, γ, µ,
Output: S̃ (reconstructed signal).
Initialization: Set S̃

0
as a random matrix, B0 = S̃

0
, β0 = 1.

General steps: for q=0, ..., Q
1) Calculate Cq = Y� ejarg(ÃBq)

2) Calculate S̃
q+1

, for i=1, ..., G
With ∇F (b̃

q

i ) = 2(Ã
H

)i(ÃB̃
q
− Cq), find s̃q+1

i as
s̃q+1
i = (bqi − µ∇F (bqi )) max(1− γµ

‖bqi−µ∇F (bqi )‖2
, 0),

where bqi is the i-th row of Bq.

3) Update: βq+1 =
1+
√

1+4(βq)2

2 ,
Bq+1 = S̃

q+1
+ βq−1

βq+1 (S̃
q+1
− S̃

q
).

4) q=q+1, go to 1).
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3. Group Sparsity Based Phase Retrieval for Direction
Finding – Simulation Results

• Performance of the proposed ToyBar is compared with the modified
GESPAR [2] based on the dual-array structure. For the modified
GESPAR, 64000 iterations are used.

• For ToyBar, the iterations are fixed at Q = 400 and 50 random
initializations are used to find the global minimum. Stepsize µ is set
as 1/(2λmax(Ã

H
Ã)).

• The angle between the two subarrys is θ̌ = 20◦. A step size of 0.5◦ is
used for initial DOA estimation.

• After obtaining the initial DOA estimates θ̂, a new grid with stepsize
0.05◦ is formed around θ̂, including 1.5◦ to each side.

• When applying the refining step to GESPAR, the number of iterations
is halved as the number of grid points decreased.
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3. Group Sparsity Based Phase Retrieval for Direction
Finding – Simulation Results

• SNR is 15 dB; K = 3 signals with incident angles −30◦,−10◦, and 50◦

(relative to the first array); number of snapshots is 20, and number of
sensors N1 = N2 = 20. Note that GESPAR requires prior knowledge
of the number of incident signals, while ToyBar does not.
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Fig. 1. Results by ToyBar.
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Fig. 2. Results by GESPAR.
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3. Group Sparsity Based Phase Retrieval for Direction
Finding – Simulation Results
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Fig. 3. RMSEs versus different SNR with 20 snapshots.
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3. Group Sparsity Based Phase Retrieval for Direction
Finding – Simulation Results
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Fig. 4. RMSEs versus number of snapshots with SNR=15dB.
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3. Group Sparsity Based Phase Retrieval for Direction
Finding – Simulation Results

• Running time based on a PC with CPU I5 5200U at 2.2GHz and 4 GB
RAM.

Table 1: Running times versus number of snapshots.

Snapshots 20 60 100
Toybar(s) 57.7 84.6 115.2

ToyBar-Refined(s) 89.2 134.1 181.4
GESPAR(s) 2154.2 6551.4 10816.5

GESPAR-Refined(s) 3384.7 10317.6 17045.5
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4. Target Localization Based on Distributed Array
Networks

• Source/target localization based on a network of distributed sensor
arrays is a very important problem in array signal processing.

• Consider K narrowband sources sk at locations Lk(xk, yk) impinging
on D deployed sensor arrays with coordinates Cd(xd, yd).
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4. Target Localization Based on Distributed Array
Networks

• The number of sensors of the d-th array is Nd, and the corresponding
magnitude-only measurements at the d-th array is expressed as

zd[p] = |Adsd[p]|+ nd, (21)

with sd[p] = [sd,1[p], ..., sd,K[p]]T , where sd,k[p] represents the p-th
snapshot of the k-th source signal corresponding to the d-th sensor
array, nd is the Nd × 1 random Gaussian noise vector.

Note that here the source signal sd,k[p] can be independent of d so
that all arrays receive the same group of source signals, but more
generally, they can be different for different arrays.

Ad is the steering matrix with its columns ad(θd,k), k = 1, ...,K, being
the corresponding steering vectors

Ad = [ad(θd,1), ...,ad(θd,K)]T . (22)

28



NON-COHERENT DOA ESTIMATION W. Liu

4. Target Localization Based on Distributed Array
Networks

• When employing a uniform circular array, ad(θd,k) is given by

ad(θd,k) = [ej
2πr
λ cos(θd,k−γ1), ..., ej

2πr
λ cos(θd,k−γNd)],

γn = 2πn/Md,
(23)

where λ is the signal wavelength and r the radius of the circular array.

• θd,k denotes the arriving angle between the k-th source and d-th
sensor array, expressed as

θd,k = arctan2(∆yd,k,∆xd,k),

∆yd,k = yk − yd, ∆xd,k = xk − xd.
(24)

with arctan2(·) being the inverse tangent operator.
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4. Target Localization Based on Distributed Array
Networks

• Collecting P snapshots to form Zd =
[
zd[1], ..., zd[P ]

]
, one has

Zd = |AdSd|+ Nd, Sd =
[
sd[1], ...,sd[P ]

]
,

Nd =
[
nd[1], ...,nd[P ]

]
.

(25)

• Now we could apply the earlier proposed direction finding method
directly to find all the DOAs relative to each array and then obtain
target locations by finding intersections of those estimated DOAs.

• Disadvantages for the above solution: Firstly, since information at
different observers is processed separately to obtain the individual
DOAs, it is sensitive to estimation accuracy at each array, and one
single unreliable estimate can cause large errors in the location
results; secondly, there are also possible pairing and ambiguity
problems associated with such a two-step approach.

30



NON-COHERENT DOA ESTIMATION W. Liu

4. Target Localization Based on Distributed Array
Networks

• A more effective approach is to jointly exploit information across all
sensor arrays by enforcing a common spatial sparsity as all target
signals originate from the same set of target locations [12].

• Divide the admissible area of interest into Gx and Gy grid points along
the x-axis and y-axis, separately (G = GxGy). The overcomplete
steering matrix of the d-th sensor array can be expressed as

Ãd = [ad(θd,1),ad(θd,2), · · · ,ad(θd,G)], (26)

where θd,g, g = 1, 2, · · · , G, is the angle between the g-th grid point
location (gx, gy) and the d-th sensor array,

θd,g = arctan2(∆yd,g,∆xd,g),

∆yd,g = gy − yd, ∆xd,g = gx − xd.
(27)
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4. Target Localization Based on Distributed Array
Networks

• Then, the sparse representation model for each array is

Zd = |ÃdS̃d|+ Nd. (28)

• Note that incident sources from an arbitrary grid point would share the
same spatial support in S̃d and Ãd, d = 1, ..., D, although the arriving
angles with respect to different arrays are different.

• Define a new steering matrix covering all D sensor arrays as

Ã = blkdiag{Ã1, ..., ÃD}. (29)

Also define

Z = [ZT1 , ...,Z
T
D]T , S̃ = [S̃

T

1 , ..., S̃
T

D]T , N = [NT1 , ...,N
T
D]T . (30)
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4. Target Localization Based on Distributed Array
Networks

• Now we reach the following overall model

Z = |ÃS̃|+ N. (31)

• Them, the source localization problem can be formulated as a joint
group sparsity based optimization problem as follows [13].

min
S̃
‖Z− |ÃS̃|‖2F + γ‖Ŝ‖2,1, with Ŝ = [S̃1, ..., S̃D]. (32)

• The problem can be solved by the earlier proposed group sparsity
based phase retrieval algorithm ToyBar.

• Similarly, we can employ grid refinement to reduce complexity of the
group sparsity based solution, or we can develop an off-grid solution
by employing Taylor series expansion [14].
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4. Target Localization Based on Distributed Array
Networks – Simulation Results

• Performance of the on-grid, grid-refinement, off-grid solutions is
compared with the existing full-measurement on-grid method [12].

• There are D = 4 distributed arrays at C1 = (10, 40)m, C2 = (30, 10)m,
C3 = (−80, 90)m and C4 = (−20, 40)m, while the off-grid locations for
K = 2 sources are L1 = (−10.5,−9.5)m and L2 = (0.5, 12.5)m.

• The number of sensors Nd = 20, while the UCA radius r =
Nd

λ
2

2π , and
P = 100 snapshots are collected unless specified otherwise.

• The area of interest is set as [−20, 20]m along both x-axis and y-axis.
In the on-grid method and initial step of the off-grid method, 2m is
used as the stepsize for the grid unless specified otherwise. For grid
refinement, a new grid with stepsize 0.2m is formed around a distance
of 1m to either side of the estimated location from the initial step.
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4. Target Localization Based on Distributed Array
Networks – Simulation Results

• The signal to noise ratio (SNR) is 20 dB.

Fig. 5. Result by the on-grid
method.

Fig. 6. Result by the off-grid
method.
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4. Target Localization Based on Distributed Array
Networks – Simulation Results

• RMSE versus SNR over 100 trials without phase errors.
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4. Target Localization Based on Distributed Array
Networks – Simulation Results

• Performance in the presence of sensor phase errors, which are
modeled as Zd = |EdAdSd| + Nd, where Ed is an Nd × Nd diagonal
matrix with each entry being a unit complex variable with a random
phase term generated independently from the Gaussian distribution
with standard derivation σ; SNR=20dB.
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4. Target Localization Based on Distributed Array
Networks – Simulation Results

• RMSEs versus number of snapshots with phase error σ = 0 and
σ = 0.2; SNR=20dB.
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5. Conclusions

• In this talk, a new class of solutions have been presented for effective
target direction finding and localization without relying on the phase
information of the received array signals, leading to robust solutions
to the problem based on magnitude-only measurements.

• The non-coherent direction finding problem was first studied and
inherent ambiguities for DOA estimation associated with phaseless
measurements were discussed in detail with the ULA as a
representative example; two structures were provided to tackle the
ambiguities issue, including a dual-array structure and the UCA.

• The non-coherent DOA estimation problem can be formulated as a
group sparse phase retrieval problem and solved by the proximal
gradient method after transforming the original non-convex cost
function into its convex surrogate via the PRIME technique, leading
to an algorithm called ToyBar.
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5. Conclusions

• Then the source/target localization problem was studied based on
distributed sensor array networks with phaseless measurements.

• The resultant non-coherent source localization problem was
formulated into a joint sparse phase retrieval form and can also
be solved using existing group-sparsity based algorithms such as
ToyBar.

• As target locations are obtained jointly and directly from the received
signals, the proposed solution is also robust against individual
measurement errors.

• It is also possible to develop off-grid solutions for the proposed
methods and for detail, please refer to our recent publication [14].

• Further extension to the wideband case can be achieved through the
convolutional sparse coding framework [15, 16].
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