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Introduction

• Effective target detection requires the suppression of clutter and interference

• Achieved by applying adaptive filter to the range cell under test (CUT)

• This requires knowledge of clutter and interference covariance matrix

• Covariance matrix estimated using training data

• Assume training data is statistically homogeneous with CUT

• Homogeneity assumption violated in practice → loss in detection performance

• Discretes in training data

• Mismatch in clutter power

• Non-Gaussian clutter

• Clutter Motion

• Need detection approaches that are robust to clutter heterogeneity
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Airborne Radar Signal Model

• Airborne radar travelling at velocity 𝑣𝑝

• 𝑁 antennas with inter-element spacing 𝑑 

• Coherent Pulse Interval (CPI)
➢comprising 𝑀 pulses
➢Pulse repetition frequency 𝑓𝑃𝑅𝐹

• Radar collects samples from 𝑁𝑟 range gates

• Focus on range 𝑘. Clutter patch at angle 𝜃
• Spatial frequency 𝑓𝑠(𝜃) =

𝑑

𝜆
sin 𝜃

• Doppler frequency 𝑓𝑑 𝜃 =
𝑣𝑝

𝜆
sin 𝜃
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Airborne Radar Signal Model

• Steering matrix of clutter patch is
𝐒c 𝜃 = 𝐬s 𝜃 𝐬t

𝑇(𝜃)

where
•  𝐬s 𝜃 = 1 𝑒𝑗2𝜋𝑓𝑠  … 𝑒𝑗2𝜋 𝑁−1 𝑓𝑠  𝑇 and
•  𝐬t 𝜃 = 1 𝑒𝑗2𝜋𝑓𝑑𝑇𝑟  … 𝑒𝑗2𝜋 𝑀−1 𝑓𝑑𝑇𝑟  𝑇

• Complex reflectivity 𝜌(𝜃)

• Then clutter return for range gate 𝑘 is

𝐂𝑘 = න
−𝜋

𝜋

𝜌 𝑘, 𝜃 𝑔 𝜃 𝐒c 𝜃 𝑑𝜃

where 𝑔(𝜃) is the two-way beampattern
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Airborne Radar Signal Model

• Target present in cell 𝑘 with reflectivity 𝛼

• Target steering vector 𝐬 = 𝐬s𝐬t
𝑇 where

•  𝐬s,T = 1 𝑒𝑗2𝜋𝜈T  … 𝑒𝑗2𝜋 𝑁−1 𝜈T  𝑇 and

•  𝐬t,T = 1 𝑒𝑗2𝜋𝑓𝑑,T𝑇𝑟  … 𝑒𝑗2𝜋 𝑀−1 𝑓𝑑,T𝑇𝑟  𝑇

• The radar received signal model for range 𝑘
becomes

𝐗𝑘 = 𝛼𝐒 + 𝐂𝑘 + 𝐍𝑘

where 𝐍𝑘 is a matrix of white Gaussian noise

• Stacking the matrices 𝐗𝑘, 𝑘 = 1, … , 𝐾 to give the well-known 
data cube 
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• The received signal for range under test (CUT)

𝐗 = ด𝛼𝐒

target

+ ณ𝐂

clutter

+ ณ𝐍

white noise

• Vectorise to give length-𝐿 (= 𝑀𝑁) received vector 

𝐱 = vec 𝐗
= 𝛼𝐬 + 𝐜 + 𝐧

• Assume reflectivities 𝜌 ∼ 𝒞𝒩 0,1

• Clutter plus noise, 𝝇 = 𝐜 + 𝐧, Gaussian distributed

𝝇 ∼ 𝒞𝒩𝐿 𝟎, 𝐑

• Formulate detection problem as hypothesis test for presence of target

Target Detection

CUT
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• Hypothesis test for 𝛼 > 0 vs 𝛼 = 0
𝐻0:  𝐱 = 𝝇
𝐻1:  𝐱 = 𝛼𝐬 + 𝝇

• Obtain suitable statistic and compare to a threshold

𝑦

𝐻1

≷ 𝛾
𝐻0

• Likelihood ratio test maximises probability of detection for fixed probability of false 

alarm

• Then

𝑦 =
𝑓𝑥(𝐱|𝐻1)

𝑓𝑥(𝐱|𝐻0)
     equivalently 𝑦 = ln 𝑓(𝐱|𝐻1) − ln 𝑓(𝐱|𝐻0) 

Target Detection

𝐳𝑘 1
𝐾𝑡

CUT



• Optimal detector is matched filter

𝑦 =
𝐬𝐻𝐑−1𝐱 2

𝐬𝐻𝐑−1𝐬
• Requires knowledge of true covariance matrix 𝐑

• Target-free homogeneous training data set 𝐙
of size 𝐾 

• Sample covariance matrix ෡𝐑 =
1

𝐾
σ𝑘=1

𝐾 𝐳𝑘𝐳𝑘
H

• Practical two-data set (TDS) detectors

 𝑦GLRT =
|𝐬𝐻 ෡𝐑−1𝐱|2

(𝐬𝐻 ෡𝐑−1𝐬)(1+
1

𝐾
𝐱𝐻 ෡𝐑−1𝐱)

  𝑦AMF =
𝐬𝐻 ෡𝐑−1𝐱

2

𝐬𝐻 ෡𝐑−1𝐬
         𝑦NAMF =

|𝐬𝐻 ෡𝐑−1𝐱|2

(𝐬𝐻 ෡𝐑−1𝐬)(𝐱𝐻 ෡𝐑−1𝐱)

Detection Schemes - Two Data Set Algorithms

𝐳𝑘 1
𝐾

CUT

Generalised Likelihood 
Ratio Test

Normalised AMFAdaptive Matched Filter



Clutter Heterogeneity

• Assumption on 𝐙

➢Snapshots, 𝐳𝑘, are free from targets

➢ independent and identically distributed (iid)

➢have same distribution as 𝐱

• Any, or all, assumptions violated in practice

• Heterogeneity arises due to

➢Discretes in training data

➢Mismatch in clutter power

➢Non-Gaussian clutter

➢Clutter Motion (non-stationary)
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Detection in Heterogeneous Clutter

• Derive detectors for particular distributions, e.g.

• K-distributed clutter

• Compound K + Gaussian clutter

• Let 𝐑 = 𝜏𝐆 where 𝐆 fixed and 𝜏 is a random variable

• K-distributed clutter

 → 𝜏 follows a Gamma distribution with mean 𝜇 and shape parameter 𝜈

• Optimum detector

𝑦𝐾 =
𝐱𝐻𝐆−𝟏𝐱 𝐬𝐻𝐆−1𝐬 − 𝐬𝐻𝐆−1𝐱 2

𝐬𝐻𝐆−1𝐬

• Requires knowledge of 𝐆



Detection in Heterogeneous Clutter

• Knowledge-aided detection

➢Use knowledge of platform and radar parameters

➢Use digital terrain and elevation data and land cover and use

• Training data pre-screening

➢non-homogeneity detection (NHD) strategies e.g. Generalised Inner Product (GIP)

• Reduce training data (sample support) requirements:

➢Rank reduced detectors

➢Sparsity techniques

• Remove training data requirement:

• Deterministic Direct Domain

• Single Data Set detectors 



Single Data Set Detectors

Obtain ෡𝐑 

Adaptive 
Filter

Test data

Training data

≷ 𝛾

Obtain 𝛀

Adaptive 
Filter

Test data
≷ 𝛾Obtain 𝐠

Two data set detectors

Single data set detectors



Single Data Set Detectors

• Single Data Set (SDS) uses data only from cell 

under test (CUT)

• Sliding window of size 𝑃 × 𝑄 to partition CUT 

giving matrix 𝐗T of size 𝑃𝑄 × 𝐾𝑇

𝐾𝑇 = (𝑁 − 𝑃 + 1)(𝑀 − 𝑄 + 1)

• Mean vector and covariance estimate 

𝐠 =
1

𝐾T
𝐗T𝐭∗ and 𝛀 =

1

𝐾T−1
(𝐗T𝐗T

H − 𝐠𝐠H)

• The SDS statistic

𝑦SDS =
𝐬𝐻 ෡𝛀−1𝐠

2

𝐬𝐻 ෡𝛀−1𝐬

CUT

𝐗 =

𝑋(0,0) ⋯ 𝑋(0,𝑄−1) ⋯ 𝑋(𝑀−1,0)

⋮ ⋱ ⋮ ⋯ ⋮
𝑋(𝑃−1,0) ⋯ 𝑋(𝑃−1,𝑄−1) ⋯ ⋮

⋮ ⋯ ⋮ ⋯ ⋮
𝑋(𝑁−1,0) ⋯ ⋯ ⋯ 𝑋(𝑁−1,𝑀−1)

𝐗T = ⋯ ⋯



Hybrid Detection Approaches

• Training data usually not completely heterogeneous

• Combine the TDS and SDS approaches → take advantage of both

Training 
data

Obtain ෡𝐑

Adaptive 
Filter

Test 
data

Obtain 𝚺
Obtain 𝛀

≷ 𝛾

Obtain 𝐠

NHDTraining 
data

Adaptive 
Filter

Test 
data

Obtain 𝚺 

Obtain 𝛀

≷ 𝛾

Obtain 𝐠

Obtain ෡𝐑



Fixed Scale Hybrid

• Assume training data is statistically homogeneous

• Combine estimates 𝛀 and ෡𝐑

• Fixed Scale Hybrid: covariance matrix estimate and detection statistic

෡𝚺FSH =
𝐾𝑇 − 1 𝛀 + 𝐾𝑡

෡𝐑

𝐾𝑇 + 𝐾𝑡 − 1
, and 𝑦FSH =

𝐬𝐻෡𝚺FS
−1𝐠

𝟐

𝐬𝐻෡𝚺FS
−1𝐬

• Fixed scale hybrid gives improved performance in homogeneous 
environments

• Degrades in heterogeneous environments due to inclusion of training 
data

• Therefore, screen data for heterogeneity first



Variable Scale Hybrid

• Variable scale hybrid detector

• Use 𝑏𝑘 , 𝑘 = 1, … , 𝐾𝑡 as a measure of heterogeneity of range 𝑘 wrt CUT

• Covariance matrix estimate ෡𝐑 becomes

෡𝐑 =
1

tr(𝐁)
𝐙𝐁𝐙𝐻  where 𝐁 = 𝑑𝑖𝑎𝑔(𝐛)

• Variable Scale Hybrid covariance matrix estimate and detection statistic

෡𝚺VSH =
𝐾𝑇 − 1 𝛀 + tr(𝐁)෡𝐑

𝐾𝑇 + tr(𝐁) − 1
, and 𝑦𝑉𝑆𝐻 =

𝐬𝐻෡𝚺VSH
−1 𝐠

𝟐

𝐬𝐻෡𝚺VSH
−1 𝐬

• Using Generalised Inner Product for screening the data we have

𝑏𝑘 = ቊ
1,  𝑖𝑓 𝜈𝐿 ≤ 𝑝𝑘 ≤ 𝜈𝑈

0,  otherwise 
where 𝑝𝑘 = 𝐳𝑘

𝐻𝐐−1𝐳



Performance Evaluation (MCARM Data) 

E. Aboutanios and B. Mulgrew, "Hybrid Detection Approach for STAP in Heterogeneous Clutter," in IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 3, pp. 1021-1033, July 2010, doi: 10.1109/TAES.2010.5545171.



Texture Estimation and Normalisation 
Detector
• Maritime clutter modelled using a speckle matrix and a texture

• K-distributed clutter 
𝐱 ∼ 𝐶𝑁(𝟎, 𝜏𝑇𝐆)

• For each training snapshot we have 
𝐳𝑘 ∼ 𝐶𝑁(𝟎, 𝜏𝑘𝐆)

• Partition each snapshot to give 𝑃 × 𝑄 matrix 𝐙𝑘 and obtain ෡𝐑𝑘

• Now

𝑸−1 ෡𝑹𝑘 ≈
𝜏𝑘

𝜏𝑇

෡𝐆−1 ෡𝐆𝑘

≈
𝜏𝑘

𝜏𝑇
𝐈

• Put  𝜁𝑘 =
1

𝑀
tr 𝐐−1 ෡𝐑𝑘 , then 𝜁𝑘 is an estimate of 

𝜏𝑘

𝜏𝑇



Texture Estimation and Normalisation 
Detector
• Use 𝜁𝑘 to normalise the texture in the training snapshots

• Define rescaled covariance matrix 

෩𝐑𝑘 =
1

𝜁𝑘

෡𝐑𝑘 ≈ 𝜏𝑇
෡𝐆𝑘

• This normalises the heterogeneity resulting from texture variations

• Finally, covariance matrix estimate and detection statistic become

෡𝚺TEN =
1

𝐾 + 𝐾𝑇 − 1
𝐾𝑇 − 1 ෡𝐐 + ෍

𝑘

෩𝐑𝑘

• Detection statistic is

𝑦TEN =
𝐬𝐻෡𝚺TEN

−1 𝐠
𝟐

𝐬𝐻෡𝚺TEN
−1 𝐬



Performance Evaluation – Simulated 
Sea Clutter
• Simulated data set uses L-band radar and 

K-distributed clutter

• Shape parameter 𝑎, and scale parameter 
𝑏, related to mean texture value 𝜇 by

𝜇 =
𝑎2

𝑏
• Smaller 𝑎 implies stronger heterogeneity

• CPI comprised 135 pulses

• Target injected at 0° azimuth and Doppler 
50Hz (equivalent to approximately 20km/h)

• Simulations use a 𝑃𝑓𝑎 = 10−3 and 10,000 
Monte Carlo Runs



Homogeneous Environment, 𝑎 = 1000 Heterogeneous Environment, 𝑎 = 1

Simulation Results



Experimental Results – Sea Clutter

• Ingara experimental data

• L-band radar with horizontal and vertical 
polarisations

• Horizontal polarisation with 30° grazing 
angle

• Douglas sea state between 3 and 4

• Shape parameter found to be 22.1 hence 
reasonably homogeneous data

• Target injected at 0° azimuth and Doppler 
50Hz (approximately 20km/h)

• 𝑃𝑓𝑎 = 10−3 and 10,000 Monte Carlo Runs



Reduced Dimension Detection

• Signal “lives” in a space of 𝐿 = 𝑁𝑀 dimensions but affords a more compact 

representation

• Brennan’s rule: clutter rank is ≤ 𝑀 + 𝛽𝑁 − 1 ≪ 𝑁𝑀

• Available number of degrees of freedom 𝐾

• Reducing dimensionality to 𝐷 < 𝐿 

• improves performance

• reduces the training data requirements

⟵𝐿 (𝐾 − 𝐿)⟶Data dimensionality Detection reliability

Number of degrees of freedom 
 𝐾



Reduced Rank Detectors 

• What value for 𝐷? E.g. clutter rank?

• How to determine the new basis i.e. 
projection matrix 𝐓?

• Principle Component Analysis
➢High clutter to noise ratio → clutter

eigenvalues larger than noise eigenvalues

➢Separate the clutter subspace from noise subspace

➢Project onto the clutter subspace

• PCA aims to capture the entire clutter subspace

• Projection target-independent → Not necessarily compact

• Cross-spectral metric: computationally expensive



Multistage Wiener Filter

• Make target steering vector a dimension of the smaller subspace

• MWF decomposes data vector 𝐱 through successive, nested Wiener filters

• Start with desired response 𝑑0 = 𝐬𝐻𝐱

• Find direction of maximum correlation 
with the desired response vector

•   𝐡i = 𝐫𝐱i−1,𝐝i−1

• Down-project onto the orthogonal subspace 
using 𝐁 = 𝐈 − 𝐡𝐡𝐇

• Iterate process finding direction of maximum correlation 
with previous stage

• Can be executed up to 𝐿 stages or truncated to a smaller subspace



Why MWF?

• MWF equivalently represented by transformation 𝐓 that is

➢Constrained to have 𝑠 as a basis vector

➢Tri-diagonalises the covariance matrix

• MWF is the solution of the problem

Find the projection 𝑻 that has 𝒔 as a
basis vector and tri-diagonalises the
covariance matrix

• MWF basis related to Krylov 
subspace

0

0

෡𝐑



Reduced-Rank SDS and Hybrid Detectors

• Reduced rank SDS (SDS-R)

➢Combine the rank-reduction processing of the MWF with SDS

➢Treat 𝐠 as the data vector 𝐱 and 𝛀 as the covariance matrix estimate

• Assume 𝐓 fixed to projection that diagonalises 𝐑
➢derive the probabilities of false alarm and detection

➢show that the resulting detector is CFAR

➢Actual performance shows loss due to 𝐓 being a random variable

Obtain 𝐠

Obtain 𝛀

𝐗



Reduced-Rank SDS and Hybrid Detectors

• Hybrid Reduced Rank FSH (FSH-R)

• Input data vector 𝐠

• Input covariance matrix 𝚺FSH =
1

𝐾𝑇+𝐾𝑡−1
(𝐖𝐖𝐻 − 𝐠𝐠𝐻)

• Hybrid Reduced Rank VSH (VSH-R)

• Inversion of 𝛀 is unstable with low sample support

• VSH-R overcomes this issue

• First apply the MWF-SDS to give the down-projection matrix
𝐓 = [𝐬 𝐡1 𝐡2 … 𝐡𝐹]

• Down-project the CUT and training data 

𝛀r = 𝐓H𝛀, 𝐳r = 𝐓H𝐳, 𝐠r = 𝐓H𝐠 

• Apply the VSH to the rank reduced data



Data Sets and Simulation Parameters

• Sea clutter simulation modelling the X-band Ingara 

sea-clutter dataset:

➢Evolved Doppler spectrum with K-distributed clutter

➢Upwind, 30o grazing angle and sea state 3

➢Two scenarios: 𝑎 = 1000 (homogenous) and 𝑎 =

0.2 (heterogeneous)

• Side looking airborne radar with 4 spatial channels

• Swerling-1 target model

• MWF: number of stages (F )  clutter rank

• SDS: 𝑃 = 16, 𝑄 = 4, 𝐾𝑇 varying but 𝐾𝑡 = 2𝑃𝑄

• Monte Carlo simulation performed 𝑃FA = 10−3 



Simulation Results
Homogeneous Clutter (a = 1000)

Independent Case Partitioned Case



Simulation Results
Heterogeneous Case (a = 0.2)

Independent Case Partitioned Case



The Rank Estimation Problem

• Recall the question “What value for 𝐷? E.g. clutter rank?”

• Reduced rank techniques require the dimensionality of the 
subspace of interest
➢Underestimating the dimensionality → worse interference suppression

➢Overestimating the dimensionality → sample support requirement

• Require clutter rank

• Challenge: How to robustly estimate the clutter rank?

• Threshold based techniques
➢New Information

➢Ritz Value Estimation



Information Theoretic Criteria - MDL

• Avoid need user-defined threshold

• Trade the likelihood of the model against its cost

• Minimise the cost function
𝐶 𝐹 = −2ℒℒ 𝐹 + 𝑝 𝐹

• Covariance matrix 𝐑 = 𝐑c + 𝜎2𝐈, assuming 𝐙 is available

ℒℒ 𝐹|𝐙 = ln
ς𝑖=𝐹+1

𝐿 𝜆
𝑖

1
𝐿−𝐹

1
𝐿 − 𝐹

σ𝑖=𝐹+1
𝐿 𝜆𝑖

𝐿−𝐹 𝐾

• The penalty function accounts for the degrees of freedom (DOFs) of the 
model

𝑝 𝐹 = 𝐹 2𝐿 − 𝐹 ln 𝐾



RVE-based MDL

• Aim to embed MDL into MWF

• RVEs are good approximations for the eigenvalues

• Can use RVE values in the MDL expression

ℒℒ 𝐹|𝐙 = ln
ς𝑖=𝐹+1

𝐿 𝜃
𝑖

1
𝐿−𝐹

1
𝐿 − 𝐹

σ𝑖=𝐹+1
𝐿 𝜃𝑖

𝐿−𝐹 𝐾

• Eliminates need for threshold

• Requires full execution of MWF

• Need another way of embedding MDL to avoid full execution of MWF



Embedded MDL

• Desire to avoid eigen decomposition

• Embed MDL within MWF structure for truncation → evaluate cost 
function at each stage

• Need to avoid reliance on smallest eigenvalues (later stages)

• Arithmetic mean of smallest 𝐿 − 𝐹 -th eigenvalues obtained from 
trace of covariance matrix at the 𝐹-th stage

෍
𝑖=𝐹+1

𝐿

𝜆𝑖 = Tr 𝐑𝐹

• Produce and hence geometric mean smallest 𝐿 − 𝐹 -th 
eigenvalues expressed in terms of 𝐹 largest eigenvalues

ෑ
𝑖=𝐹+1

𝐿

𝜆𝑖 =
det 𝐑

ς𝑖=1
𝐹 𝜆𝑖



Embedded MDL

• Substituting into the log-likelihood

ℒℒ 𝐹 = ln
det 𝐑

1
𝐿 − 𝐹

Tr 𝐑𝐹 ς𝑖=1
𝐹 𝜆𝑖

𝐿−𝐹 𝐾

• Determinant of 𝐑 constant and can be ignored

• The cost function is calculated at each stage

• Execution is continued until a turning point is observed

• Therefore, need 𝑟 + 1 stages where 𝑟 is the clutter rank



Simulation Results

• N=4, M=16, 10,000 runs

• Brennan’s rule rank 19

• CNRs from 0 to 40 dB

• Standard MDL: gives19 at 
high CNR

• RVE methods: impact of 
threshold ‘tuning’

• Embedded MDL and MDL RVE 
slight overestimation at high CNR



Target-Focused MWF Truncation

• Truncation is based on clutter rank

• Current implementations of MWF aim to capture entire clutter subspace

• Not all clutter is relevant to target direction

• Known that fewer stages than clutter rank needed for maximum 𝑃𝑑



Problem Reformulation

• Current approaches estimate clutter rank

• Question that should be ask is”

Which clutter dimensions actually 
matter to the target location

• MWF stage determination should 
seek to answer this question

• Derive an MDL-like solution

• Maximise information between 
recovered subspace and target signal

• Future work will analyse this approach and improve it
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