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Introduction

 Effective target detection requires the suppression of clutter and interference
» Achieved by applying adaptive filter to the range cell under test (CUT)

* This requires knowledge of clutter and interference covariance matrix
« Covariance matrix estimated using training data
« Assume training data is statistically homogeneous with CUT

* Homogeneity assumption violated in practice — loss in detection performance
 Discretes in training data
« Mismatch in clutter power
* Non-Gaussian clutter
 Clutter Motion

* Need detection approaches that are robust to clutter heterogeneity




Outline

« Airborne Radar Signal Model

« Target Detection and the Two-Data Set Detectors
 Clutter Heterogeneity

 Detection Approaches for Heterogeneous Clutter
 Single Data Set Algorithms and hybrid Detectors
 Texture Estimation and Normalisation Detector

* The Multistage Wiener Filter

« Rank Estimation Approaches for the MWF




Airborne Radar Signal Model

* Airborne radar travelling at velocity v,

« N antennas with inter-element spacing d

« Coherent Pulse Interval (CPI)
»comprising M pulses
»Pulse repetition frequency fprr

« Radar collects samples from N,. range gates
* Focus on range k. Clutter patch at angle 6

« Spatial frequency f,(0) = %Siné

« Doppler frequency f,;(6) = %”sine




Airborne Radar Signal Model

« Steering matrix of clutter patch is
Sc(6) = s5(8)s (6)

where
» 5,(0) =[1 ei2nfs | ei2nN-Dfs |7 and
o 5.(0) =[1 el2nfalr  pizn(M-DfyT |T

« Complex reflectivity p(0)
* Then clutter return for range gate k Is

Ce= | p(0)9(@)5.(0)d0

where g(8) Is the two-way beampattern




Airborne Radar Signal Model

« Target present in cell k with reflectivity a

- Target steering vector s = s.s{ where
* Sy = [1 eJ2mvT ejZn(N—l)vT ]T and
o S =1[1 ef2tfarTr | pi2n(M-DfarTr |7

* The radar received signal model for range k
becomes

Xk = aS + Ck + Nk
where N;, Is a matrix of white Gaussian noise

« Stacking the matrices X;, k = 1, ..., K to give the well-known
data cube




Target Detection

* The received signal for range under test (CUT)
X= aS + C + N
e Lo

-
target clutter white nM /
* Vectorise to give length-L (= MN) received vector e
x = vec(X) | - N
=as+c+n y | IRaa—— '
« Assume reflectivities p ~ €N (0,1) /k
* Clutter plus noise, ¢ = ¢ + n, Gaussian distributed N "1

¢~ CN.(0,R)
« Formulate detection problem as hypothesis test for presence of target
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Target Detection

« Hypothesis test for |a] > 0 vs |a] =0 = _
lo: x = ¢ T
H: x=as+¢ : ::I/Cﬁ

 Obtain suitable statistic and compare to a threshold :L,_L:’.f".'.i S

H, ke _::::::_2{/
> ,J-’ -----------
y=Yy il / Kt

HO {Zk}1

* Likelihood ratio test maximises probability of detection for fixed probability of false
alarm

e Then

_ fx(xIHy)
fre(X|Ho)

equivalently vy =Inf(x|H;) —In f(X|H,)
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Detection Schemes - Two Data Set Algorithms

« Optimal detector is matched filter

|IsHR™1x|?
Y = TgHR-1g

* Requires knowledge of true covariance matrix R

* Target-free homogeneous training data set Z /J
of size K

. |
« Sample covariance matrix R = P Kz Z

‘—————-————

N

 Practical two-data set (TDS) detectors

B |SH ﬁ_1X|2 . |SH ﬁ—1X|2 _ |SH ﬁ—lxlz
YGLRT = (Gx R-1s)(1+xH R-1x) YAMF = “_Hp-1g YNAMF = (sH R15)(x" R—1x)
~ ~ ~ ~ ~ ~ N~ —~ J
Generalised Likelihood Adaptive Matched Filter Normalised AMF

Ratio Test
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Clutter Heterogeneity

oX 10° MCARM Acquisition Area for Flight 5, Acquisition 575

« Assumption on Z x o T

rrrrrrrrrrr

» Snapshots, z,, are free from targets
» independent and identically distributed (iid)
» have same distribution as x

North-South Distance (m)

* Any, or all, assumptions violated in practice

« Heterogeneity arises due to %
> Discretes in training data & Y | gl.iﬁ 1
» Mismatch in clutter power -g Clutter Motjon g// %
» Non-Gaussian clutter i : T
» Clutter Motion (non-stationary) gjj /’ \
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Detection in Heterogeneous Clutter

Derive detectors for particular distributions, e.g.
 K-distributed clutter
« Compound K + Gaussian clutter

Let R = G where G fixed and 7 Is a random variable
K-distributed clutter
— 7 follows a Gamma distribution with mean u and shape parameter v

Optimum detector

~ (x#671x)(s"G™s) — |sP G x/?
Yk = sHG-1s

Requires knowledge of G
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Detection in Heterogeneous Clutter

Knowledge-aided detection
» Use knowledge of platform and radar parameters
» Use digital terrain and elevation data and land cover and use

Training data pre-screening
» non-homogeneity detection (NHD) strategies e.g. Generalised Inner Product (GIP)

Reduce training data (sample support) requirements:
» Rank reduced detectors
» Sparsity techniques

Remove training data requirement:
« Deterministic Direct Domain
« Single Data Set detectors




Single Data Set Detectors

Adaptive .
Filter <V
IIHHHHHE!I\

: Adaptive
Obtain S
Filter
Obtain Q




Single Data Set Detectors

 Single Data Set (SDS) uses data only from cell

under test (CUT)

« Sliding window of size P X Q to partition CUT
giving matrix Xt of size PQ X Ky <
Kr=(N—-P+1)(M—-Q+1)
 Mean vector and covariance estimate

S o e o = =

CUT

Xo0  Xwe-1)

Xip-1,00 " XpP-10-1)

1 " 1 X =
g = Xrt"and @ = — (XrXT — ggM)
« The SDS statistic

Y
2
|s? Qg

Ysps = =
s Q~1g

XM-1,0)

X(N-1,M-1)

]
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Hybrid Detection Approaches

 Training data usually not completely heterogeneous
« Combine the TDS and SDS approaches - take advantage of both

Test

data Obtain g
Obtain Q — Adapti
- Obtain X aptive 2y
Training = Filter
Obtain R
data
Obtain
Test _ ns
data Obtain Q ——
, aptive <
Obtain X . 2y [
Training NHD - Filter
data

Obtain R




Fixed Scale Hybrid

« Assume training data is statistically homogeneous

« Combine estimates Q and R

 Fixed Scale Hybrid: covariance matrix estimate and detect%on statistic
- (Kr — DQ+ KR _|s"Zrs g

) = ,and = —
ESH Ky +K,—1 YESH = TSHS 15

 Fixed scale hybrid gives improved performance in homogeneous
environments

* Degrades in heterogeneous environments due to inclusion of training
data

* Therefore, screen data for heterogeneity first




Variable Scale Hybrid

 Variable scale hybrid detector

 Use b,k =1, ..., K; as a measure of heterogeneity of range k wrt CUT
- Covariance matrix estimate R becomes

R = o (B) ZBZ" where B = diag(b)
 Variable Scale Hybrid covariance matrix estimate and detectizon statistic
(Kr — 1)Q + tr(B)R _ |s"Evsusl

Yoy = ,an = _
Vsh K +tr(B) — 1 YvsH =g Todus

* Using Generalised Inner Product for screening the data we have

{1, if vi <px < vy
bk —

Hna-1
) where n, = z Z
0, otherwise Pic kQ
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Performance Evaluat

Plot of the AMF Detection Statistic vs Range for the MCARM Data at Doppler Bin -9 and Broadside
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E. Aboutanios and B. Mulgrew, "Hybrid Detection Approach for STAP in Heterogeneous Clutter," in IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 3, pp. 1021-1033, July 2010, doi: 10.1109/TAES.2010.5545171.
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Texture Estimation and Normalisation
Detector

« Maritime clutter modelled using a speckle matrix and a texture
K-distributed clutter

X~ CN(0,77G)
For each training snapshot we have

Z, ~ CN(0,7,G)
Partition each snapshot to give P x Q matrix Z, and obtain R,
* Now

PPN Tk’\_ —~
Q 1sz_G 1Gk
Tr
LTk
Tr

Put ¢, = %tr(Q_lf{k), then ¢, is an estimate of z—:
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Texture Estimation and Normalisation
Detector

« Use ¢, to normalise the texture in the training snapshots

Define rescaled covariance matrix
~ 1 _ _
Rk == _Rk =~ TTGk
k
This normalises the heterogeneity resulting from texture variations

Finally, covariance matrix estimate and detection statistic become

~ 1 . ~
)) = Kr—1 :E:R.
TEN K+KT—1{(T )Q + 4 k

Detection statistic IS

- 2
Hy—1
y _ |S ZTENgl
TEN = _pe-1
S"LTENS
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Performance Evaluation — Simulated
Sea Clutter

 Simulated data set uses L-band radar and
K-distributed clutter

Parameter Simulated | Ingara
Centre frequency (GHz) 1.33 1.33
e Shape parameter a, and scale parameter | Bandwidn ) 140 140
Pulse repetition frequency (Hz) 1500 1500
b, related to mean texture value u by Number of spatial channels 4 4
2 Inter-element spacing /2 1.164
_ & e O e | 1 |
H _ b Clzligleur toolll](e):i_s\,z ryatio (dB) v 20 10.1
« Smaller a implies stronger heterogeneity
« CPI comprised 135 pulses

 Target injected at 0° azimuth and Doppler ;°
50Hz (equivalent to approximately 20km/h) .,

» Simulations use a Pr, = 1072 and 10,000 j‘;jj
Monte Carlo Runs -80 -60 -40 -20 0 20 40 60 80

Steering angle (deg)




Slmulatlon Results

Probablhty of Detectlon

1 Probability of Detection
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Experimental Results — Sea Clutter

1 Probability of Detection

AMF
NAMF
SDS

 Ingara experimental data 08|
 L-band radar with horizontal and vertical Y8 I—

- Hyb-VS
©

polarisations 5

* Horizontal polarisation with 30° grazing
angle 0

-35 -30 A 7-25 —210 —115 -110 l5 0
* Douglas sea state between 3 and 4
0.6

SINR (dB)
« Shape parameter found to be 22.1 hence .|
reasonably homogeneous data 04k

 Target injected at 0° azimuth and Doppler &V\/\'\/\\
50Hz (approximately 20km/h) L /jW’ .
0 \ S MA—OAP s

* P, = 107° and 10,000 Monte Carlo Runs x

o

2F

Probability of Detection

N A ’
-600 -400 -200 200 400 600
Doppler Frequency




Reduced Dimension Detection

 Signal “lives” in a space of L = NM dimensions but affords a more compact
representation

* Brennan’s rule: clutterrankis <M + N —1 <K NM
 Available number of degrees of freedom K

Number of degrees of freedom
K
Data dimensionality «—L (K — L)— Detection reliability

« Reducing dimensionalityto D < L
* Improves performance
 reduces the training data requirements
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Reduced Rank Detectors

EVD Spectrum

G600

400

« What value for D? E.g. clutter rank?

* How to determine the new basis I.e.
projection matrix T?

 Principle Component Analysis

» High clutter to noise ratio — clutter
eigenvalues larger than noise eigenvalues

» Separate the clutter subspace from noise subspace B ey P
» Project onto the clutter subspace

« PCA aims to capture the entire clutter subspace
* Projection target-independent — Not necessarily compact
» Cross-spectral metric: computationally expensive

200

Daoppler Frequency (H2)
=]

-600




Multistage Wiener Filter

Make target steering vector a dimension of the smaller subspace
MWZF decomposes data vector x through successive, nested Wiener filters
Start with desired response d, = sx

Find direction of maximum correlation {-
with the desired response vector é

hj=ry_ 4., WWEE¢

Down-project onto the orthogonal subspace
using B = I — hh!

Iterate process finding direction of maximum correlation
with previous stage

Can be executed up to L stages or truncated to a smaller subspace

SSSSSS



Why MWF?

« MWF equivalently represented by transformation T that is
» Constrained to have s as a basis vector
» Tri-diagonalises the covariance matrix

« MWF is the solution of the problem

Find the projection T that has s as a
basis vector and tri-diagonalises the
covariance matrix

 MWF basis related to Krylov

subspace

7~
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Reduced-Rank SDS and Hybrid Detectors

* Reduced rank SDS (SDS-R)

» Combine the rank-reduction processing of the MWF with SDS
» Treat g as the data vector x and Q as the covariance matrix estimate

« Assume T fixed to projection that diagonalises R
» derive the probabilities of false alarm and detection
» show that the resulting detector is CFAR

» Actual performance shows loss due to T being a random variable

d
- m




Reduced-Rank SDS and Hybrid Detectors

* Hybrid Reduced Rank FSH (FSH-R)

 Input data vector g
1

Kr+Ki—1
* Hybrid Reduced Rank VSH (VSH-R)

* Inversion of Q is unstable with low sample support

* VSH-R overcomes this issue

* First apply the MWF-SDS to give the down-projection matrix

T =[sh; h,..hg]
« Down-project the CUT and training data
Q. =THQ, z.=THz, g.=THg
* Apply the VSH to the rank reduced data

» Input covariance matrix Zpgy = (WWH — ggt)
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Data Sets and Simulation Parameters

MVDR Spectrum

« Sea clutter simulation modelling the X-band Ingara
sea-clutter dataset:
»Evolved Doppler spectrum with K-distributed clutter
»Upwind, 30° grazing angle and sea state 3
» Two scenarios: a = 1000 (homogenous) and a =

Doppler frequency (Hz)
o

-500

-1000

-1500

-80 -60 -40 -20 0 20 40 60 80

0.2 (heterogeneous) Aaimh (degrees)
 Side looking airborne radar with 4 spatial channels Parameter Value
Carrier frequency, f, 10 GHz
« Swerling-1 target model Bandwidth, B | 200 MHz
Pulse repetition frequency, f; 3000 Hz
« MWF: number of stages (F ) =~ clutter rank Polarisation Horizontal
Platform velocity, v, 70 m/s
° SDS P=16 Q = 4 KT Vary”’]g but Kt — ZPQ Azimuth two way 3 dB beamwidth 12.5°
’ ’ Clutter to noise ratio 30dB

« Monte Carlo simulation performed Pg, = 1073 Shape parameter, a 1000 and 0.2




Simulation Results

Homogeneous Clutter (a = 1000)
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Simulation Results

Heterogeneous Case (a = 0.2)
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The Rank Estimation Problem

» Recall the question “What value for D? E.g. clutter rank?”

* Reduced rank techniqgues require the dimensionality of the
subspace of interest

»Underestimating the dimensionality — worse interference suppression
» QOverestimating the dimensionality — sample support requirement

* Require clutter rank
« Challenge: How to robustly estimate the clutter rank?

* Threshold based techniques
> New Information
» Ritz Value Estimation
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Information Theoretic Criteria - MDL

* Avoid need user-defined threshold
* Trade the likelihood of the model against its cost

 Minimise the cost function
C(F) = —=2LL(F) + p(F)

 Covariance matrix R = R, + ¢*I, assuming Z is a(\L/ag?Kble
h "

L-F

Al
LL(F|Z) = In (=F41

le F+1

. Thedplenalty function accounts for the degrees of freedom (DOFs) of the
mode

p(F) = F(2L—F)InK
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RVE-based MDL

« Aim to embed MDL into MWF

RVEs are good approximations for the eigenvalues

Can use RVE values in the MDL expression
1 (L-F)K
(=10 7"
1
le F+1

LL(F|Z) = In

Eliminates need for threshold
Requires full execution of MWF
Need another way of embedding MDL to avoid full execution of MWF

ssssss



Embedded MDL

 Desire to avoid eigen decomposition

 Embed MDL within MWF structure for truncation — evaluate cost
function at each stage

* Need to avoid reliance on smallest eigenvalues (later stages)

 Arithmetic mean of smallest (L. — F)-th eigenvalues obtained from
trace of covariance matrix at the F-th stage

ZL 2 = Tr(R)

I=F+1
« Produce and hence geometric mean smallest (L — F?-th
eigenvalues expressed in terms of F largest eigenvalues

L det(R)
1_[- M=
1=F+1 =17\
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Embedded MDL

« Substituting into the log-likelihood

det(R)
LL(F) = ln( 7 >
I — F Tr(RF) Hf=1 /11'

« Determinant of R constant and can be ignored

* The cost function is calculated at each stage

« Execution is continued until a turning point is observed
* Therefore, need r + 1 stages where r is the clutter rank

(L-F)K




Simulation Results

Parameter Value
Carrier frequency, fc 1.32 GHz
e N=4. M=16. 10.000 runs Pulse repetition frequency, f; 1500 Hz
’ ’ ’ Platform velocity, vp 85 m/s
* Brennan's rule rank 19 Beam pattern Cosine
* CNRs from 0 to 40 dB . m
« Standard MDL.: gives19 at ; L e
high CNR / I
» RVE methods: impact of j .

threshold ‘tuning’

« Embedded MDL and MDL RVE
slight overestimation at high CNR




Target-Focused MWF Truncation

* Truncation is based on clutter rank

e Current implementations of MWF aim to capture entire clutter subspace
* Not all clutter is relevant to target direction

« Known that fewer stages than clutter rank needed for maximum P,

EVD Spectrum
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Problem Reformulation

« Current approaches estimate clutter rank

* Question that should be ask is” [ [

] ] ] —6— TF K=64
Which clutter dimensions actually ogl| TR
matter to the target location iy

MWF stage determination should o
seek to answer this question 04}

Derive an MDL-like solution
Maximise information between

02

iy A
= 2 s =31 =)
0 -V - e ey = ] -

recovered subspace and target signal s 20 a5 0 5 0 5 10

SIR (dB)

Future work will analyse this approach and improve it
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Thank you

Questions?

elias@ieee.org
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