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Multi Sensor Fusion with limited Communication

Distributed Kalman filtering has significant 
advantages in a multi sensor scenario:

n Save bandwidth (preprocessing)

n Distributed calculation

n Full information available at arbitrary 
instants of time
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Distributed / Federated / Naïve Kalman Filter 
Prediction – Filtering – Cycle 

PredictionFiltering

Initialization
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Product Representation

Naïve Fusion (Convex Combination) 
is exact if and only if cross-
covariances are zero.

The posterior of S mutually independent estimates is given by 

Product Representation

As a consequence, the fused estimate and covariance of the naïve approach is
given by
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This fusion rule is also called simple convex combination.
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If there is no prior on the fused track, we have according to Bayes
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Product Representation Prediction w/ Relaxed Evolution Model

The prior is calculated by

ẍ = �⌦ẏ (82)
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given in product 
representation!
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transition density
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Product Formula (1st & 2nd Formulation)
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It holds that
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Apply Product Formula (2nd version)
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The Federated Kalman Filter ignores the integral:
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Define a tight bound We define P̂ as a tight bound, if for any other fusion
covariance P it holds that

(EP1 \ EP2) ✓ EP ✓ EP̂ ) P = P̂ (283)

Theorem 3 Let P̂ be a tight bound for the fusion of P1 and P2. Then:

9� 2 [0, 1] : P̂
�1 = �P�1

1 + (1� �)P�1
2 . (284)
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Federated Kalman Filter Filtering

For the filtering step, we use the fact that measurement noise of the sensors 
is mutually independent:

variable xk and we obtain the desired product representation:

p(xk|Z
k�1) /

SY

s=1

N
�
xk; x̃

s

k|k�1, P̃k|k�1

�
. (659)

12.3 Filtering
In this section, we estimate the posterior density p(xk|Z

k) which additionally
involves the set of measurements Zk = {zs

k
}s=1,...,S from all sensors at time tk.

To this end, it is important to notice that the sensors act independently from
each other:

p(Zk|xk) /
SY

s=1

p(zs
k
|xk), (660)

where p(zs
k
|xk) = N

�
zs
k
; Hs

k
xk, Rs

k

�
is the likelihood function of sensor s. Using

Bayes’ rule, we obtain

p(xk|Z
k) =

p(Zk|xk) p(xk|Z
k�1)R

dxk p(Zk|xk) p(xk|Z
k�1)

. (661)

We can now fill in the prediction (659) and the likelihood function (660) and
then have

p(xk|Z
k) /

SY

s=1

N
�
zs
k
; Hs

k
xk, R

s

k

�
N
�
xk; x̃

s

k|k�1, P̃k|k�1

�
. (662)

A final use of the product formula now yields the product representation for the
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A final use of the product formula now yields the product representation for the
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Distributed Kalman Filter 
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Globalized Covariance Solution

Exact solution by ‘globalizing’ the estimate covariance [1]:

[1] Govaers, F.; Koch, W.; , "Distributed Kalman Filter Fusion at Arbitrary Instants of Time," Information Fusion (FUSION), 2010 13th Conference on, 26-29 July 2010
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The exact decorrelation only is possible if global knowledge on the fused
covariance is available:
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For each instant of time, we introduce the globalied local covariance P̃k|k which
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For each instant of time, we introduce the globalied local covariance P̃k|k which
is given by
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Then, the following representation of the fused posterior holds:
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In other words, the local posterior covariance is replaced by a globalized covari-
ance matrix such that the result of the convex combination yields the optimal
estimate parameters.

13.3 Prediction
According to the globalization assumption, we start with a product representa-
tion at time tk�1 where k � 1 � 1:
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As a consequence, the fused estimate and covariance of the naïve approach is
given by
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This fusion rule is also called simple convex combination.
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Filtering equations
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In other words, the local posterior covariance is replaced by a globalized covari-
ance matrix such that the result of the convex combination yields the optimal
estimate parameters.
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Filtering conclusion
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As a consequence, the fused estimate and covariance of the naïve approach is
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Distributed Kalman 
Filter

Federated Kalman 
Filter Naïve Fusion

Posterior Representation For estimating the number of objects for each
class c = {1, . . . , C}, one may apply marginalization on the set density functions
for multi target state estimation based on random finite sets:

p(Xk|Zk) =
CX

c=1

p(Xk|Zk, c). (1)

Thus, since there is no interaction between the different classes, the sum rep-
resentation remains active during the Bayesian prediction-filtering cycle. Each
sum component is therefore represented by its own intensity function, which is
conditioned on its specific species class c.

Likelihood: The measurements at each time step k = 1, 2, . . . are given by a
set of observations Zk = {z1k, . . . , z

mk
k }, where it is assumed that each observa-

tion

z
i
k =

⇣
z
i,x
k ,pi

k

⌘
(2)

consists of a location z
i,x
k and the normalized softmax output of a neural network

p
i
k. The statistics of both can be assumed to be independent, therefore,

p(zik|xk, c) = p(zi,xk |xk) p(p
i
k|c), (3)

where

p(zi,xk |xk) = N
⇣
z
i,x
k ; Hkxk, Rk

⌘
, and (4)

p(pi
k|c) = [pi

k]c. (5)
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k]c denotes the cth component of the normalized vector. This
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Target Existence Decision – Distributed 

n For automated decision making with respect to track 
existence, different categories of algorithms exist:

n Centralized: Send all measurements to the Fusion Center 
(FC) and decide.

n Decentralized: Decide locally on each sensor node, send 
the decisions to all connected neighbors and fuse the 
received decisions.

n Distributed: Fuse the local data and compute parameters 
which are combined in a distinguished fusion center to 
make a global decision.
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Target Existence Decision – Distributed 
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Likelihood Ratio Test

The Sequential Likelihood Ratio (LR) test is a statistically optimal algorithm to decide between two 
hypotheses:

§ h1: there is a target.

§ h0: there is no target.

A decision can be made based on two thresholds A and B.     

• P1: accept h1 given h1.
• P0: accept h1 given h0.

A decision now can be made at time tk, if the likelihood ratio
(LR) given by

LR(k) =
p(h1|Zk)

p(h0|Zk)
(2)

exceeds or falls below one of two thresholds A and B:
• LR(k) < A: accept h0, i.e. delete track
• LR(k) > B: accept h1, i.e. confirm track
• A < LR(k) < B: continue processing.

The thresholds A and B depend on the probabilities P1 and
P0 and can be taken from the statistics literature.

A recursive computation of the LR score is obtained by a
an application of the Bayes theorem on the numerator and on
the denominator:

LR(k) =
p(Zk|h1)

p(Zk|h0)
· p(h1)

p(h0)
(3)

=
p(Zk|h1)

p(Zk|h0)
(4)

where p(h1)
p(h0)

= 1 since p(h1) = p(h0) models equal chances
for both hypotheses prior to the data processing.

Now due to the definition of the conditional density we have
that for both hypotheses i = 0, 1

p(Zk|hi) = p(Zk,Zk�1|hi) (5)
= p(Zk|Zk�1, hi) p(Zk�1|hi). (6)

Furthermore, we use marginalization of the target state xk 2
Rn at time tk for the numerator which yields

p(Zk,Zk�1|h1) =

Z
dxk p(Zk,Zk�1,xk|h1) (7)

=

Z
dxk p(Zk|xk, h1)

p(xk|Zk�1, h1) p(Zk�1|h1). (8)

Therefore one obtains

LR(k) =

R
dxk p(Zk|xk, h1) p(xk|Zk�1, h1)

p(Zk|h0)

· LR(k � 1) (9)
=: ⇤(k) · LR(k � 1). (10)

The Centralized Kalman filter (CKF), which processes the full
set of measurements of all sensors at each time step computes
the parameter ⇤(k) scheme based on the complete set of
measurements Zk = {Z1

k , . . . , Z
S
k }. Since this requires a full

transmission of all measurements, this methodology often is
infeasible in practical applications.

The approach described in this paper proposes a distributed
computation of ⇤(k), that is, the FC reconstructs the actual
LR score based on parameters transmitted by each sensor.

III. DISTRIBUTED KALMAN FILTER

Often in multi sensor applications, it is required to pre-
process data at each sensor node in order to economize on
bandwidth. The preprocessed parameters are then fused to the
global estimate. In literature, there exist numerous algorithms
and approaches to solve the distributed estimation problem.
To provide an entire overview of those is beyond the scope of
this paper, therefore, we reference the reader to [2], [9], [1] for
instance. An exact method for the linear–Gaussian case is the
Distributed Kalman Filter (DKF) [10], i.e. the resulting fused
track is equivalent to a CKF processing all measurements from
every sensor.

The basic idea of the DKF can be outlined as follows.
The initialization of the prediction–filtering cycle is assumed
to be mutually independent. This implies that a product
representation of the posterior at time tk�1 holds:

p(xk�1|Zk�1) /
SY
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N
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s
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s
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�
.

(11)

This initialization can be obtained easily for example by means
of mutually independent initial observations of all S sensors.

Prediction: If standard Kalman prediction was applied to
each of the local tracks, the estimation errors would become
correlated and therefore the product representation would not
hold anymore. As a consequence the DKF uses a modified
prediction, which avoids cross–covariances to appear [10]:
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s
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�
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It should be noted that this requires all measurement models
from the remote sensors to be known for the local data
processing. In the literature essentially three approaches have
been proposed to overcome this drawback. This is of particu-
lar importance for applications with non–linear measurement
functions, since the linearized measurement error becomes
data–dependent.

• Debiasing approach: The bias in the estimation error
covariance if only the local sensor model is available can
be compensated by means of correction matrices. This
means an additional matrix in the state dimension to be
transmitted, but the resulting estimate can be shown to
be unbiased [11], [12].

• Accumulated State Density approach: In [13] it is shown
that Accumulated State Densities (ASDs) can be used for
exact distributed fusion without the sensor parameters
being globally known. The exact solution can only be
achieved if the full trajectory including the complete joint
state covariance is transmitted to the FC. An approximate
solution was proposed by only transmitting part of the
trajectory or even single state estimates [14].
Filtering: Since the measurement error of the sensors are

mutually independent, the filtering methodologies of Kalman
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global estimate. In literature, there exist numerous algorithms
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To provide an entire overview of those is beyond the scope of
this paper, therefore, we reference the reader to [2], [9], [1] for
instance. An exact method for the linear–Gaussian case is the
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The basic idea of the DKF can be outlined as follows.
The initialization of the prediction–filtering cycle is assumed
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from the remote sensors to be known for the local data
processing. In the literature essentially three approaches have
been proposed to overcome this drawback. This is of particu-
lar importance for applications with non–linear measurement
functions, since the linearized measurement error becomes
data–dependent.

• Debiasing approach: The bias in the estimation error
covariance if only the local sensor model is available can
be compensated by means of correction matrices. This
means an additional matrix in the state dimension to be
transmitted, but the resulting estimate can be shown to
be unbiased [11], [12].

• Accumulated State Density approach: In [13] it is shown
that Accumulated State Densities (ASDs) can be used for
exact distributed fusion without the sensor parameters
being globally known. The exact solution can only be
achieved if the full trajectory including the complete joint
state covariance is transmitted to the FC. An approximate
solution was proposed by only transmitting part of the
trajectory or even single state estimates [14].
Filtering: Since the measurement error of the sensors are

mutually independent, the filtering methodologies of Kalman
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Recursive computation of the LR 

According to Bayes, one has

• P1: accept h1 given h1.
• P0: accept h1 given h0.

A decision now can be made at time tk, if the likelihood ratio
(LR) given by

LR(k) =
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p(h0|Zk)
(2)

exceeds or falls below one of two thresholds A and B:
• LR(k) < A: accept h0, i.e. delete track
• LR(k) > B: accept h1, i.e. confirm track
• A < LR(k) < B: continue processing.

The thresholds A and B depend on the probabilities P1 and
P0 and can be taken from the statistics literature.
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This initialization can be obtained easily for example by means
of mutually independent initial observations of all S sensors.

Prediction: If standard Kalman prediction was applied to
each of the local tracks, the estimation errors would become
correlated and therefore the product representation would not
hold anymore. As a consequence the DKF uses a modified
prediction, which avoids cross–covariances to appear [10]:
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It should be noted that this requires all measurement models
from the remote sensors to be known for the local data
processing. In the literature essentially three approaches have
been proposed to overcome this drawback. This is of particu-
lar importance for applications with non–linear measurement
functions, since the linearized measurement error becomes
data–dependent.

• Debiasing approach: The bias in the estimation error
covariance if only the local sensor model is available can
be compensated by means of correction matrices. This
means an additional matrix in the state dimension to be
transmitted, but the resulting estimate can be shown to
be unbiased [11], [12].
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being globally known. The exact solution can only be
achieved if the full trajectory including the complete joint
state covariance is transmitted to the FC. An approximate
solution was proposed by only transmitting part of the
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is the joint likelihood function of the state on the current data
at time tk.
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This can be seen for instance by an application of the linear
least squares algorithm on the set of uncorrelated estimate
parameters {xs

k|k}s=1,...,S .

IV. DISTRIBUTED SEQUENTIAL LIKELIHOOD RATIO TEST

For the problem of track extraction, a decision based on
the LR score has to be computed. In Section II a recursive
computation was derived:

LR(k) = LR(k � 1) · ⇤(k) (18)
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In this Section a distributed computation of ⇤(k) will be
derived based on a single target likelihood function for sensor
data with non–perfect detection and false measurements.

Denominator: The denominator is the probability of
observing Zk = z
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k , . . . , z

S,mS
k

k at time tk if there is no target.
The spatial distribution of a single false measurement is given
by

p(zik|h0) =
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where |FoV| is the spatial size of the field of view. Now the
event also consists of the fact that m =

P
s m

s
k measurements

are observed. Together, we model the probability to observe
m mutually independent false measurements. Therefore

p(Zk|h0) = |FoV|�mpF (m). (21)

Numerator: The likelihood in the nominator is the union
of the events that the target was detected (D) and that it was
not detected (¬D):
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In this simplified model, it is assumed that the target detection
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where each hypothesis has the same probability p(j) = 1
m .
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Distributed Kalman Filter (DKF)
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this paper, therefore, we reference the reader to [2], [9], [1] for
instance. An exact method for the linear–Gaussian case is the
Distributed Kalman Filter (DKF) [10], i.e. the resulting fused
track is equivalent to a CKF processing all measurements from
every sensor.

The basic idea of the DKF can be outlined as follows.
The initialization of the prediction–filtering cycle is assumed
to be mutually independent. This implies that a product
representation of the posterior at time tk�1 holds:

p(xk�1|Zk�1) /
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s
k�1|k�1, P

s
k�1|k�1

�
.

(11)

This initialization can be obtained easily for example by means
of mutually independent initial observations of all S sensors.

Prediction: If standard Kalman prediction was applied to
each of the local tracks, the estimation errors would become
correlated and therefore the product representation would not
hold anymore. As a consequence the DKF uses a modified
prediction, which avoids cross–covariances to appear [10]:

p(xk|Zk�1) /
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. (12)

It should be noted that this requires all measurement models
from the remote sensors to be known for the local data
processing. In the literature essentially three approaches have
been proposed to overcome this drawback. This is of particu-
lar importance for applications with non–linear measurement
functions, since the linearized measurement error becomes
data–dependent.

• Debiasing approach: The bias in the estimation error
covariance if only the local sensor model is available can
be compensated by means of correction matrices. This
means an additional matrix in the state dimension to be
transmitted, but the resulting estimate can be shown to
be unbiased [11], [12].

• Accumulated State Density approach: In [13] it is shown
that Accumulated State Densities (ASDs) can be used for
exact distributed fusion without the sensor parameters
being globally known. The exact solution can only be
achieved if the full trajectory including the complete joint
state covariance is transmitted to the FC. An approximate
solution was proposed by only transmitting part of the
trajectory or even single state estimates [14].
Filtering: Since the measurement error of the sensors are

mutually independent, the filtering methodologies of Kalman

Ø The DKF computes the exact product representation but cannot be 
applied when the local covariances are data dependent.

Ø The FKF and Naïve Fusion yield approximately a product representation:

Based on the assumptions for the sensor models from the
previous section, one can derive the update factor ⇤(k)

for the current set of observations Zk = z
1,1
k , . . . ,z

S,mS
k

k :

⇤(k) =
Z

dxk
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⌘!
p(xk |Zk�1),

(24)

where mk =
PS

s=1m
s
k is the total sum of the local number

of measurements ms
k of sensor s at time tk .

It is well-known that in general the local estimates
are correlated due to the common process noise of the
tracked target. Under certain conditions, that is, if the
DKF globalization is applied [8] or if a deterministic
target without process noise is considered [12], the es-
timates are uncorrelated. Without a↵ecting the actual
T2TF proces, we propose an approximation of the fused
posterior without the cross-covariances. This will result
in sub-optimal decisions, however, the applied algorithm
has the following advantage:

• The algorithm can be applied for all kind of Gaus-
sian filters including non-linear scenarios and am-
bigus data interpretation.

• The resulting distributed decision methodology is
very close to the (optimal) centralized solution and
is superior to existing solutions by a clear margin.

Thus, let us consider the fused posteror as the product
representation as in the DKF
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⌘
(25)

which is an approximation of the optimal fusion, since
cross-correlations are negletcted here. This approxima-
tion, however, is only used for the distributed calculation
of the LR score for the track existence decision. Therefore
the T2TF process itself is not a↵ected. The normalization
constant ck|k�1 in (25) can be obtained by integration:
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In case of a two sensor scenario, a single application of
the product formular directly yields
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where
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are the fused parameters, which in this case are inte-
grated away.

In the general case one obtains by an iterative appli-
cation of the very same formula
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where x
(1:s)
k|k�1 and P
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k|k�1 are the fused estimates and co-

variances resulting from the parameters from all sensors
from 1 to s given by
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The product in (31) is initialized with the parameters
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P
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In order to obtain the approximated global LR-score
by means of a distributed calculation of the update pa-
rameter ⇤(k), we use the fact that the local observations
are mutually uncorrelated across the sensors. Therefore,
one has that

p(Zk |xk ,h1) = p(Z1
k , . . . ,Z

S
k |xk ,h1) (36)

=
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As a consequence, ⇤(k) in (24) for the global update is
given by
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By introducing the unnormalized weights
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The LR score at time k is given by

based algorithms can be applied. An application of the Bayes
theorem directly yields

p(xk|Zk) / p(xk|Zk�1) · `(Zk;xk) (13)
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where

`(Zk;xk) =
SY

s=1

`(Zs
k;xk) (15)

is the joint likelihood function of the state on the current data
at time tk.

Track Fusion at the FC: If the resulting track parameters
x
s
k|k and their covariance matrices P

s
k|k are transmitted by

all sensors s = 1, . . . , S the fusion becomes an almost trivial
convex combination:

xk|k = Pk|k
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This can be seen for instance by an application of the linear
least squares algorithm on the set of uncorrelated estimate
parameters {xs

k|k}s=1,...,S .

IV. DISTRIBUTED SEQUENTIAL LIKELIHOOD RATIO TEST

For the problem of track extraction, a decision based on
the LR score has to be computed. In Section II a recursive
computation was derived:

LR(k) = LR(k � 1) · ⇤(k) (18)

⇤(k) =

R
dxk p(Zk|xk, h1) p(xk|Zk�1, h1)

p(Zk|h0)
. (19)

In this Section a distributed computation of ⇤(k) will be
derived based on a single target likelihood function for sensor
data with non–perfect detection and false measurements.

Denominator: The denominator is the probability of
observing Zk = z

1,1
k , . . . , z

S,mS
k

k at time tk if there is no target.
The spatial distribution of a single false measurement is given
by

p(zik|h0) =
1

|FoV| , (20)

where |FoV| is the spatial size of the field of view. Now the
event also consists of the fact that m =

P
s m

s
k measurements

are observed. Together, we model the probability to observe
m mutually independent false measurements. Therefore

p(Zk|h0) = |FoV|�mpF (m). (21)

Numerator: The likelihood in the nominator is the union
of the events that the target was detected (D) and that it was
not detected (¬D):

p(Zk|xk, h1) = p(Zk|xk, h1, D) p(D)

+ p(Zk|xk, h1,¬D)p(¬D). (22)

In this simplified model, it is assumed that the target detection
probability of the sensor is a constant pD, that is it is
independent of the state of the target. Thus we also directly
obtain

p(D) = pD, (23)
p(¬D) = (1� pD). (24)

Now, the probability of the sensor likelihood in the case of a
detection is the union of the events that the jth measurement is
from the target, where j = 1, . . . ,m. If zjk is from the target,
then still all other measurements are false measurements.
Therefore one obtains:
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=
mX

j=1

p({zl}l 6=j |clutter) p(j) p(zjk|xk, h1, D, j) (26)

=
mX

j=1

|FoV|�(m�1)pF (m� 1)
1

m
N
�
zj ; Hkxk, Rk

�
,

(27)

where each hypothesis has the same probability p(j) = 1
m .

Now for the number of clutter measurements, the following
equation holds:

pF (m) =
�

m
· pF (m� 1). (28)

Therefore, by means of the clutter density ⇢F = �
|FoV| , we

have that
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Concluding the nominator and the denominator one obtains
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where

based algorithms can be applied. An application of the Bayes
theorem directly yields

p(xk|Zk) / p(xk|Zk�1) · `(Zk;xk) (13)
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where

`(Zk;xk) =
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is the joint likelihood function of the state on the current data
at time tk.

Track Fusion at the FC: If the resulting track parameters
x
s
k|k and their covariance matrices P

s
k|k are transmitted by

all sensors s = 1, . . . , S the fusion becomes an almost trivial
convex combination:

xk|k = Pk|k
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This can be seen for instance by an application of the linear
least squares algorithm on the set of uncorrelated estimate
parameters {xs

k|k}s=1,...,S .

IV. DISTRIBUTED SEQUENTIAL LIKELIHOOD RATIO TEST

For the problem of track extraction, a decision based on
the LR score has to be computed. In Section II a recursive
computation was derived:

LR(k) = LR(k � 1) · ⇤(k) (18)

⇤(k) =

R
dxk p(Zk|xk, h1) p(xk|Zk�1, h1)

p(Zk|h0)
. (19)

In this Section a distributed computation of ⇤(k) will be
derived based on a single target likelihood function for sensor
data with non–perfect detection and false measurements.

Denominator: The denominator is the probability of
observing Zk = z

1,1
k , . . . , z

S,mS
k

k at time tk if there is no target.
The spatial distribution of a single false measurement is given
by

p(zik|h0) =
1

|FoV| , (20)

where |FoV| is the spatial size of the field of view. Now the
event also consists of the fact that m =

P
s m

s
k measurements

are observed. Together, we model the probability to observe
m mutually independent false measurements. Therefore

p(Zk|h0) = |FoV|�mpF (m). (21)

Numerator: The likelihood in the nominator is the union
of the events that the target was detected (D) and that it was
not detected (¬D):

p(Zk|xk, h1) = p(Zk|xk, h1, D) p(D)

+ p(Zk|xk, h1,¬D)p(¬D). (22)

In this simplified model, it is assumed that the target detection
probability of the sensor is a constant pD, that is it is
independent of the state of the target. Thus we also directly
obtain

p(D) = pD, (23)
p(¬D) = (1� pD). (24)

Now, the probability of the sensor likelihood in the case of a
detection is the union of the events that the jth measurement is
from the target, where j = 1, . . . ,m. If zjk is from the target,
then still all other measurements are false measurements.
Therefore one obtains:

p(Zk|xk, h1, D) =
mX
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=
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where each hypothesis has the same probability p(j) = 1
m .

Now for the number of clutter measurements, the following
equation holds:

pF (m) =
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· pF (m� 1). (28)

Therefore, by means of the clutter density ⇢F = �
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have that
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Concluding the nominator and the denominator one obtains
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Application on the DKF: The DKF is based on the
product representation which is given by
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where the normalization constant ck|k�1 can be obtained by
integration:
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In case of a two sensor scenario, a single application of the
product formular directly yields
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where
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are the fused parameters, which in this case are integrated
away.

In the general case one obtains by an iterative application
of the very same formula
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where x
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k|k�1 are the fused estimates and covari-

ances resulting from the parameters from all sensors from 1
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The product in (39) is initialized with the parameters
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For the application on the DKF one has to consider that at
each time step S mutually independent measurement processes
are realized. Therefore, the likelihood function of the joint
measurement process factorizes. As a consequence, ⇤(k) in

(32) for the DKF is given by

⇤(k) =
1

ck|k�1

Z
dxk

SY

s=1

⇢

�
(1� pD) +

pD
⇢F

msX

j=1

N
�
z
j,s
k ; Hs

kxk, R
s
k

��

· N
�
xk; x

s
k|k�1, P

s
k|k�1

��
. (44)

By introducing the unnormalized weights
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and applying the product formula, the factor is given by
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where the following abbreviations were used
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based algorithms can be applied. An application of the Bayes
theorem directly yields
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where
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is the joint likelihood function of the state on the current data
at time tk.

Track Fusion at the FC: If the resulting track parameters
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k|k and their covariance matrices P
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all sensors s = 1, . . . , S the fusion becomes an almost trivial
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This can be seen for instance by an application of the linear
least squares algorithm on the set of uncorrelated estimate
parameters {xs

k|k}s=1,...,S .

IV. DISTRIBUTED SEQUENTIAL LIKELIHOOD RATIO TEST

For the problem of track extraction, a decision based on
the LR score has to be computed. In Section II a recursive
computation was derived:

LR(k) = LR(k � 1) · ⇤(k) (18)

⇤(k) =

R
dxk p(Zk|xk, h1) p(xk|Zk�1, h1)
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In this Section a distributed computation of ⇤(k) will be
derived based on a single target likelihood function for sensor
data with non–perfect detection and false measurements.

Denominator: The denominator is the probability of
observing Zk = z
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k at time tk if there is no target.
The spatial distribution of a single false measurement is given
by

p(zik|h0) =
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where |FoV| is the spatial size of the field of view. Now the
event also consists of the fact that m =
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are observed. Together, we model the probability to observe
m mutually independent false measurements. Therefore

p(Zk|h0) = |FoV|�mpF (m). (21)

Numerator: The likelihood in the nominator is the union
of the events that the target was detected (D) and that it was
not detected (¬D):

p(Zk|xk, h1) = p(Zk|xk, h1, D) p(D)

+ p(Zk|xk, h1,¬D)p(¬D). (22)

In this simplified model, it is assumed that the target detection
probability of the sensor is a constant pD, that is it is
independent of the state of the target. Thus we also directly
obtain

p(D) = pD, (23)
p(¬D) = (1� pD). (24)

Now, the probability of the sensor likelihood in the case of a
detection is the union of the events that the jth measurement is
from the target, where j = 1, . . . ,m. If zjk is from the target,
then still all other measurements are false measurements.
Therefore one obtains:

p(Zk|xk, h1, D) =
mX

j=1

p(Zk|xk, h1, D, j)p(j) (25)

=
mX

j=1

p({zl}l 6=j |clutter) p(j) p(zjk|xk, h1, D, j) (26)

=
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|FoV|�(m�1)pF (m� 1)
1

m
N
�
zj ; Hkxk, Rk

�
,

(27)

where each hypothesis has the same probability p(j) = 1
m .

Now for the number of clutter measurements, the following
equation holds:

pF (m) =
�

m
· pF (m� 1). (28)

Therefore, by means of the clutter density ⇢F = �
|FoV| , we

have that

|FoV|�(m�1)pF (m� 1)
1

m
= |FoV| 1

�
|FoV|�mpF (m)

(29)

=
1

⇢F
|FoV|�mpF (m). (30)

For the likelihood function we there have

p(Zk|xk, h1) = (|FoV|�mpF (m))((1� pD)

+
pD
⇢F

mX
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N
�
zj ; Hkxk, Rk

�
) (31)

Concluding the nominator and the denominator one obtains

⇤(k) =

Z
dxk

✓
(1� pD) +

pD
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N
�
zj ; Hkxk, Rk

�◆
p(xk|Zk�1)

(32)

based algorithms can be applied. An application of the Bayes
theorem directly yields

p(xk|Zk) / p(xk|Zk�1) · `(Zk;xk) (13)

/
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N
�
xk; x

s
k|k�1, P

s
k|k�1

�
`(Zs

k;xk),

(14)

where

`(Zk;xk) =
SY

s=1

`(Zs
k;xk) (15)

is the joint likelihood function of the state on the current data
at time tk.

Track Fusion at the FC: If the resulting track parameters
x
s
k|k and their covariance matrices P

s
k|k are transmitted by

all sensors s = 1, . . . , S the fusion becomes an almost trivial
convex combination:

xk|k = Pk|k

SX

s=1

(Ps
k|k)

�1
x
s
k|k (16)

Pk|k =

 
SX

s=1

(Ps
k|k)

�1

!�1

. (17)

This can be seen for instance by an application of the linear
least squares algorithm on the set of uncorrelated estimate
parameters {xs

k|k}s=1,...,S .

IV. DISTRIBUTED SEQUENTIAL LIKELIHOOD RATIO TEST

For the problem of track extraction, a decision based on
the LR score has to be computed. In Section II a recursive
computation was derived:

LR(k) = LR(k � 1) · ⇤(k) (18)

⇤(k) =

R
dxk p(Zk|xk, h1) p(xk|Zk�1, h1)

p(Zk|h0)
. (19)

In this Section a distributed computation of ⇤(k) will be
derived based on a single target likelihood function for sensor
data with non–perfect detection and false measurements.

Denominator: The denominator is the probability of
observing Zk = z

1,1
k , . . . , z

S,mS
k

k at time tk if there is no target.
The spatial distribution of a single false measurement is given
by

p(zik|h0) =
1

|FoV| , (20)

where |FoV| is the spatial size of the field of view. Now the
event also consists of the fact that m =

P
s m

s
k measurements

are observed. Together, we model the probability to observe
m mutually independent false measurements. Therefore

p(Zk|h0) = |FoV|�mpF (m). (21)

Numerator: The likelihood in the nominator is the union
of the events that the target was detected (D) and that it was
not detected (¬D):

p(Zk|xk, h1) = p(Zk|xk, h1, D) p(D)

+ p(Zk|xk, h1,¬D)p(¬D). (22)

In this simplified model, it is assumed that the target detection
probability of the sensor is a constant pD, that is it is
independent of the state of the target. Thus we also directly
obtain

p(D) = pD, (23)
p(¬D) = (1� pD). (24)

Now, the probability of the sensor likelihood in the case of a
detection is the union of the events that the jth measurement is
from the target, where j = 1, . . . ,m. If zjk is from the target,
then still all other measurements are false measurements.
Therefore one obtains:

p(Zk|xk, h1, D) =
mX

j=1

p(Zk|xk, h1, D, j)p(j) (25)

=
mX

j=1

p({zl}l 6=j |clutter) p(j) p(zjk|xk, h1, D, j) (26)

=
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|FoV|�(m�1)pF (m� 1)
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(27)

where each hypothesis has the same probability p(j) = 1
m .

Now for the number of clutter measurements, the following
equation holds:

pF (m) =
�

m
· pF (m� 1). (28)

Therefore, by means of the clutter density ⇢F = �
|FoV| , we

have that

|FoV|�(m�1)pF (m� 1)
1

m
= |FoV| 1

�
|FoV|�mpF (m)

(29)

=
1

⇢F
|FoV|�mpF (m). (30)

For the likelihood function we there have

p(Zk|xk, h1) = (|FoV|�mpF (m))((1� pD)

+
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⇢F

mX
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N
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�
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Concluding the nominator and the denominator one obtains

⇤(k) =

Z
dxk

✓
(1� pD) +

pD
⇢F

mX
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N
�
zj ; Hkxk, Rk

�◆
p(xk|Zk�1)

(32)

Now, the normalization
constant is important!
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DKF Normalization Constant
The normalization constant is given by

Application on the DKF: The DKF is based on the
product representation which is given by

p(xk|Zk�1) =
1

ck|k�1

SY

s=1

N
�
xk; x

s
k|k�1, P

s
k|k�1

�

(33)

where the normalization constant ck|k�1 can be obtained by
integration:

ck|k�1 =

Z
dxk
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s=1

N
�
xk; x

s
k|k�1, P

s
k|k�1

�
. (34)

In case of a two sensor scenario, a single application of the
product formular directly yields

ck|k�1 = N
�
x
1
k|k�1; x

2
k|k�1, P

1
k|k�1 +P

2
k|k�1

�

·
Z

dxk N
�
xk; xk|k�1, Pk|k�1

�
(35)
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2
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�
, (36)

where

xk|k�1 = Pk|k�1((P
1
k|k�1)

�1
x
1
k|k�1

+ (P2
k|k�1)

�1
x
2
k|k�1) (37)

Pk|k�1 = ((P1
k|k�1)

�1 + (P2
k|k�1)

�1)�1 (38)

are the fused parameters, which in this case are integrated
away.

In the general case one obtains by an iterative application
of the very same formula

ck|k�1 =
S�1Y

s=1

N
�
x
s+1
k|k�1; x

(1:s)
k|k�1, P

(1:s)
k|k�1 +P

s
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�
,

(39)

where x
(1:s)
k|k�1 and P

(1:s)
k|k�1 are the fused estimates and covari-

ances resulting from the parameters from all sensors from 1
to s given by

x
(1:s)
k|k�1 = P

(1:s)
k|k�1

sX
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(Pi
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k|k�1, (40)
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(Pi
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The product in (39) is initialized with the parameters

x
(1:1)
k|k�1 = x

1
k|k�1, (42)

P
(1:1)
k|k�1 = P

1
k|k�1. (43)

For the application on the DKF one has to consider that at
each time step S mutually independent measurement processes
are realized. Therefore, the likelihood function of the joint
measurement process factorizes. As a consequence, ⇤(k) in

(32) for the DKF is given by

⇤(k) =
1
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Z
dxk
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By introducing the unnormalized weights

p? j,s =

(
(1� pD) if j = 0
pD

⇢F
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j,s
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kx
s
k|k�1, S

s
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else

(45)

and applying the product formula, the factor is given by
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where the following abbreviations were used

S
s
k = H

s
kP

s
k|k�1H

s >
k +R

s
k, (47)

x
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Now, the normalized weights are given by

pj,s =
p? j,s

p̄s
(53)

where

p̄s =
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p? j,s. (54)

Therefore, we have that
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Since
Pms

j=0 p
j,s N

�
xk; x

j,s
k|k, P

j,s
k|k
�

is a normalized Gaussian
mixture, moment matching can be applied to compute an
approximation in terms of a single Gaussian:
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Algebraic manipulations yield

Application on the DKF: The DKF is based on the
product representation which is given by

p(xk|Zk�1) =
1
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where the normalization constant ck|k�1 can be obtained by
integration:
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In case of a two sensor scenario, a single application of the
product formular directly yields
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where
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Pk|k�1 = ((P1
k|k�1)

�1 + (P2
k|k�1)

�1)�1 (38)

are the fused parameters, which in this case are integrated
away.

In the general case one obtains by an iterative application
of the very same formula
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where x
(1:s)
k|k�1 and P
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k|k�1 are the fused estimates and covari-

ances resulting from the parameters from all sensors from 1
to s given by
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The product in (39) is initialized with the parameters

x
(1:1)
k|k�1 = x

1
k|k�1, (42)

P
(1:1)
k|k�1 = P

1
k|k�1. (43)

For the application on the DKF one has to consider that at
each time step S mutually independent measurement processes
are realized. Therefore, the likelihood function of the joint
measurement process factorizes. As a consequence, ⇤(k) in

(32) for the DKF is given by
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By introducing the unnormalized weights

p? j,s =

(
(1� pD) if j = 0
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and applying the product formula, the factor is given by
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where the following abbreviations were used
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s
k|k�1, (51)
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k|k = P
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Now, the normalized weights are given by

pj,s =
p? j,s

p̄s
(53)

where

p̄s =
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j=0

p? j,s. (54)

Therefore, we have that
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Since
Pms

j=0 p
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j,s
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is a normalized Gaussian
mixture, moment matching can be applied to compute an
approximation in terms of a single Gaussian:
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Based on the assumptions for the sensor models from the
previous section, one can derive the update factor ⇤(k)

for the current set of observations Zk = z
1,1
k , . . . ,z

S,mS
k

k :

⇤(k) =
Z

dxk
 
(1� pD) +

pD
⇢F

mkX

j=1

N
⇣
zj ;Hkxk , Rk

⌘!
p(xk |Zk�1),

(24)

where mk =
PS

s=1m
s
k is the total sum of the local number

of measurements ms
k of sensor s at time tk .

It is well-known that in general the local estimates
are correlated due to the common process noise of the
tracked target. Under certain conditions, that is, if the
DKF globalization is applied [8] or if a deterministic
target without process noise is considered [12], the es-
timates are uncorrelated. Without a↵ecting the actual
T2TF proces, we propose an approximation of the fused
posterior without the cross-covariances. This will result
in sub-optimal decisions, however, the applied algorithm
has the following advantage:

• The algorithm can be applied for all kind of Gaus-
sian filters including non-linear scenarios and am-
bigus data interpretation.

• The resulting distributed decision methodology is
very close to the (optimal) centralized solution and
is superior to existing solutions by a clear margin.

Thus, let us consider the fused posteror as the product
representation as in the DKF

p(xk |Zk�1) ⇡ 1
ck|k�1

SY

s=1

N
⇣
xk ; xsk|k�1, P

s
k|k�1

⌘
(25)

which is an approximation of the optimal fusion, since
cross-correlations are negletcted here. This approxima-
tion, however, is only used for the distributed calculation
of the LR score for the track existence decision. Therefore
the T2TF process itself is not a↵ected. The normalization
constant ck|k�1 in (25) can be obtained by integration:

ck|k�1 =
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⌘
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In case of a two sensor scenario, a single application of
the product formular directly yields
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where
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�1 + (P2
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�1)�1 (30)

are the fused parameters, which in this case are inte-
grated away.

In the general case one obtains by an iterative appli-
cation of the very same formula
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where x
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k|k�1 and P
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k|k�1 are the fused estimates and co-

variances resulting from the parameters from all sensors
from 1 to s given by
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The product in (31) is initialized with the parameters
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k|k�1 = P

1
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In order to obtain the approximated global LR-score
by means of a distributed calculation of the update pa-
rameter ⇤(k), we use the fact that the local observations
are mutually uncorrelated across the sensors. Therefore,
one has that
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As a consequence, ⇤(k) in (24) for the global update is
given by
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By introducing the unnormalized weights
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Sequential LR Update for DKF

The updating factor of the LR is given byApplication on the DKF: The DKF is based on the
product representation which is given by
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where the normalization constant ck|k�1 can be obtained by
integration:
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are the fused parameters, which in this case are integrated
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In the general case one obtains by an iterative application
of the very same formula
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where x
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k|k�1 and P

(1:s)
k|k�1 are the fused estimates and covari-

ances resulting from the parameters from all sensors from 1
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An application of the product formula yields
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The normalized weights are given by
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product formular directly yields
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where
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are the fused parameters, which in this case are integrated
away.

In the general case one obtains by an iterative application
of the very same formula
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where x
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The product in (39) is initialized with the parameters
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For the application on the DKF one has to consider that at
each time step S mutually independent measurement processes
are realized. Therefore, the likelihood function of the joint
measurement process factorizes. As a consequence, ⇤(k) in
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By introducing the unnormalized weights
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and applying the product formula, the factor is given by
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where the following abbreviations were used
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Computation of Lambda

As a result one obtains

where
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Using this approximation in the factor ⇤(k) case yields
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An iterative application of the product formula as in (39) yields
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where the posterior normalization constant is given by
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V. EVALUATION

This section presents a numerical example of the pro-
posed algorithm in a two sensor scenario. If the target
is present, each sensor produces a detection with a fixed
probability pD. In addition, both sensors produce 1000 false
alarms in the Field of View which is given by the square
(�10km, 10km)⇥ (�10km, 10km)2. The target positions are
measured with additive Gaussian zero mean noise, where the
covariance for all instants of time and both sensors is given
by R

s
k = diag(10m2, 10m2). The target is simulated to move

according to a discretized white noise acceleration model with
a power spectral density q = 1.0m2

s3 . If it is present, the target
starts at the origin of the coordinate system and has an initial
velocity of 200m

s in the direction of the x-axis.
Figure 1 shows a comparison of the LR score of a cen-

tralized PDAF versus the DKF based track extraction scheme
for different values of pD. Also both cases were considered,
where the target is present and where the target is not present.
Both algorithms are initialized with a noise corrupted state.

In Figure 1 it can be seen that the distributed LR score is
almost equivalent to the centralized solution. In most cases,
the track can be confirmed after two steps (target exists) or
after 12 steps (target does not exist).

2This corresponds to a clutter density of ⇢F = 2.5⇥ 10�6.

VI. CONCLUSION

In this paper the distributed computation of the likelihood
ratio score was presented. The approach is based on the Dis-
tributed Kalman Filter where a single target likelihood function
was used which allows to model uniformly distributed clutter
with a fixed clutter rate. Numerical examples have shown that
the fused track existence score is close to equivalent to a
centralized approach.
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Conclusion: Distributed Track Existence Decision

Local Sensor Nodes Fusion Center

Prediction: Relaxed Evolution Model

III. Federated Kalman Filter

Often in multi sensor applications, it is required to
preprocess data at each sensor node in order to econo-
mize on bandwidth. The preprocessed parameters are
then fused to the global estimate. In literature, there
exist numerous algorithms and approaches to solve the
distributed estimation problem. To provide an entire
overview of those is beyond the scope of this paper,
therefore, we reference the reader to [2], [10], [1] for
instance. An exact method for the linear–Gaussian case
is the Distributed Kalman Filter (DKF) [8], i.e. the result-
ing fused track is equivalent to a CKF processing all
measurements from every sensor.

The basic concept of the DKF is the product represen-
tation where the fused density conditioned on the sensor
data of all sensors is given by

p(xk |Zk) /
SY

s=1

N
⇣
xk ; xsk|k , P

s
k|k

⌘
. (11)

Here, S is the number of sensors and each factor cor-
responds to the local parameter of a specific sensor s.
However, in the DKF those parameters do not exactly
correspond to the locally optimal estimates, since those
tracks are modified for the sake of global optimality. This
modification includes the incorporation of the global
information knowledge given in terms of the remote
sensor models.

The FKF is closely related to the DKF [11], in partic-
ular, the same “relaxed” evolution model is used:

p(xk |xk�1) = N
⇣
xk ; Fk|k�1xk�1, SQk|k�1

⌘
, (12)

where Fk|k�1 is the transition model matrix and Qk|k�1
is the process noise error covariance. This results in
the following modified prediction formulae in the local
processors:

x
s
k|k�1 = Fk|k�1x

s
k|k�1, (13)

P
s
k|k�1 = Fk|k�1P

s
k|k�1F

>
k|k�1 + SQk|k�1. (14)

The globalization step of the DKF does not exist for
the FKF resulting in suboptimal estimates for the linear
Gaussian case but making it more flexible for applica-
tions with non-linear models and measurement associa-
tion ambiguity.
Since the measurement error of the sensors are mutu-

ally independent, the filtering methodologies of Kalman
based algorithms can be applied also to the FKF. An
application of the Bayes’ theorem directly yields

p(xk |Zk) / p(xk |Zk�1) · `(Zk ;xk) (15)

/
SY

s=1

N
⇣
xk ; xsk|k�1, P

s
k|k�1

⌘
`(Zs

k ;xk), (16)

where

`(Zk ;xk) =
SY

s=1

`(Zs
k ;xk) (17)

is the joint likelihood function of the state on the current
data at time tk . Throughout this paper, we will refer
to standard tracking assumptions such as Poisson dis-
tributed number of false alarms (FA) with mean � which
are uniformly distributed in the field of view of the
sensor with density ⇢F . Targets, if existent, are detected
with probability pD . Though those parameters may di↵er
between the sensor nodes, we will skip the sensor index
here for the sake of notational simplicity.

Track Fusion at the FC: If the resulting track pa-
rameters x

s
k|k and their covariance matrices P

s
k|k are

transmitted by all sensors s = 1, . . . ,S from the local FKF
processors the fusion becomes an almost trivial convex
combination:

xk|k = Pk|k
SX

s=1

(Ps
k|k)
�1
x
s
k|k (18)

Pk|k =

0
BBBBB@

SX

s=1

(Ps
k|k)
�1
1
CCCCCA

�1

. (19)

For case (b), where the local parameters are processed
with respect to local optimality, this naı̈ve fusion ap-
proach will lead to optimistic and inconsistent fused
error covariances. As a consequence more sophisticated
methods such as Covariance Intersection should be used:

xk|k = Pk|k
SX

s=1

!s (Ps
k|k)
�1
x
s
k|k (20)

Pk|k =

0
BBBBB@

SX
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!s (Ps
k|k)
�1
1
CCCCCA

�1

, (21)

where all !s 2 [0,1], sum up to one and are optimized
with respect to the posterior fused error covariance
matrix.

IV. Distributed Sequential Likelihood Ratio Test

For the problem of track extraction, a decision based
on the LR score has to be computed. In Section II a
recursive computation was derived:

LR(k) = LR(k � 1) ·⇤(k) (22)

⇤(k) =

R
dxk p(Zk |xk ,h1) p(xk |Zk�1,h1)

p(Zk |h0)
. (23)

Filtering:
• Update state parameters 

with EKF / MHT / PDAD / …
• calculate decision contribution

Based on the assumptions for the sensor models from the
previous section, one can derive the update factor ⇤(k)

for the current set of observations Zk = z
1,1
k , . . . ,z

S,mS
k

k :

⇤(k) =
Z

dxk
 
(1� pD) +

pD
⇢F

mkX

j=1

N
⇣
zj ;Hkxk , Rk

⌘!
p(xk |Zk�1),

(24)

where mk =
PS

s=1m
s
k is the total sum of the local number

of measurements ms
k of sensor s at time tk .

It is well-known that in general the local estimates
are correlated due to the common process noise of the
tracked target. Under certain conditions, that is, if the
DKF globalization is applied [8] or if a deterministic
target without process noise is considered [12], the es-
timates are uncorrelated. Without a↵ecting the actual
T2TF proces, we propose an approximation of the fused
posterior without the cross-covariances. This will result
in sub-optimal decisions, however, the applied algorithm
has the following advantage:

• The algorithm can be applied for all kind of Gaus-
sian filters including non-linear scenarios and am-
bigus data interpretation.

• The resulting distributed decision methodology is
very close to the (optimal) centralized solution and
is superior to existing solutions by a clear margin.

Thus, let us consider the fused posteror as the product
representation as in the DKF

p(xk |Zk�1) ⇡ 1
ck|k�1

SY

s=1

N
⇣
xk ; xsk|k�1, P

s
k|k�1

⌘
(25)

which is an approximation of the optimal fusion, since
cross-correlations are negletcted here. This approxima-
tion, however, is only used for the distributed calculation
of the LR score for the track existence decision. Therefore
the T2TF process itself is not a↵ected. The normalization
constant ck|k�1 in (25) can be obtained by integration:

ck|k�1 =
Z

dxk
SY

s=1

N
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s
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⌘
. (26)

In case of a two sensor scenario, a single application of
the product formular directly yields
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where

xk|k�1 = Pk|k�1((P1
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�1)�1 (30)

are the fused parameters, which in this case are inte-
grated away.

In the general case one obtains by an iterative appli-
cation of the very same formula
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where x
(1:s)
k|k�1 and P
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k|k�1 are the fused estimates and co-

variances resulting from the parameters from all sensors
from 1 to s given by
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The product in (31) is initialized with the parameters

x
(1:1)
k|k�1 = x

1
k|k�1, (34)

P
(1:1)
k|k�1 = P

1
k|k�1. (35)

In order to obtain the approximated global LR-score
by means of a distributed calculation of the update pa-
rameter ⇤(k), we use the fact that the local observations
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V. Evaluation
In the numerical evaluation, a non-linear scenario

with four sensors is presented, which observe range and
bearing of a target, if it exists. Additionally, uniformly
distributed clutter measurements are simulated with a
varying number, which is Poisson distributed with a
mean of 5 (per sensor). The initialization is based on the
first measurement of the target. A White Noise Constant
Acceleration Model is used for the target dynamics and
the sensors are arranged along a circle with a radius
of 9 km from the target’s initial position. Zero-mean
Gaussian noise is added to the actual observations with
a standard deviation 25m in range and 1� in bearing.
For the tracking, variants of the Extended Kalman Filter
(EKF) were used in order to mitigate the non-linearity
in the measurement data with respect to the Cartesian
state space.

We compare the proposed algorithm based on the
Distributed Kalman Filter (DKF) with a centralized ap-
proach (CKF), which receives all measurements from
all sensors at each time step. This would be infeasible
in most practical distributed applications, however, it
provides the results of the “optimal” conditions. Fur-
thermore, we compare against taking the mean of the
local LR score for each local sensor, which is a sound
approach given that all sensors have equal parameters
in all scenarios.

The results of a numerical Monte Carlo evaluation are
shown in Figure 1. The (optimal) centralized approach
is plotted in green (solid line), the proposed method
based on the DKF is blue (dashed) and the mean of the
local Kalman Filters (LKF) are shown in black (dash-
dotted). One can see that the distributed approach al-
most achieves optimal perfomance, if the detection prob-
ability pD is su�ciently high (Figure 1 a). The distance
to the CKF increases, if the pD becomes lower. This is
due to the fact that the local estimates slightly start to
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V. Evaluation
In the numerical evaluation, a non-linear scenario

with four sensors is presented, which observe range and
bearing of a target, if it exists. Additionally, uniformly
distributed clutter measurements are simulated with a
varying number, which is Poisson distributed with a
mean of 5 (per sensor). The initialization is based on the
first measurement of the target. A White Noise Constant
Acceleration Model is used for the target dynamics and
the sensors are arranged along a circle with a radius
of 9 km from the target’s initial position. Zero-mean
Gaussian noise is added to the actual observations with
a standard deviation 25m in range and 1� in bearing.
For the tracking, variants of the Extended Kalman Filter
(EKF) were used in order to mitigate the non-linearity
in the measurement data with respect to the Cartesian
state space.

We compare the proposed algorithm based on the
Distributed Kalman Filter (DKF) with a centralized ap-
proach (CKF), which receives all measurements from
all sensors at each time step. This would be infeasible
in most practical distributed applications, however, it
provides the results of the “optimal” conditions. Fur-
thermore, we compare against taking the mean of the
local LR score for each local sensor, which is a sound
approach given that all sensors have equal parameters
in all scenarios.

The results of a numerical Monte Carlo evaluation are
shown in Figure 1. The (optimal) centralized approach
is plotted in green (solid line), the proposed method
based on the DKF is blue (dashed) and the mean of the
local Kalman Filters (LKF) are shown in black (dash-
dotted). One can see that the distributed approach al-
most achieves optimal perfomance, if the detection prob-
ability pD is su�ciently high (Figure 1 a). The distance
to the CKF increases, if the pD becomes lower. This is
due to the fact that the local estimates slightly start to
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V. Evaluation
In the numerical evaluation, a non-linear scenario

with four sensors is presented, which observe range and
bearing of a target, if it exists. Additionally, uniformly
distributed clutter measurements are simulated with a
varying number, which is Poisson distributed with a
mean of 5 (per sensor). The initialization is based on the
first measurement of the target. A White Noise Constant
Acceleration Model is used for the target dynamics and
the sensors are arranged along a circle with a radius
of 9 km from the target’s initial position. Zero-mean
Gaussian noise is added to the actual observations with
a standard deviation 25m in range and 1� in bearing.
For the tracking, variants of the Extended Kalman Filter
(EKF) were used in order to mitigate the non-linearity
in the measurement data with respect to the Cartesian
state space.

We compare the proposed algorithm based on the
Distributed Kalman Filter (DKF) with a centralized ap-
proach (CKF), which receives all measurements from
all sensors at each time step. This would be infeasible
in most practical distributed applications, however, it
provides the results of the “optimal” conditions. Fur-
thermore, we compare against taking the mean of the
local LR score for each local sensor, which is a sound
approach given that all sensors have equal parameters
in all scenarios.

The results of a numerical Monte Carlo evaluation are
shown in Figure 1. The (optimal) centralized approach
is plotted in green (solid line), the proposed method
based on the DKF is blue (dashed) and the mean of the
local Kalman Filters (LKF) are shown in black (dash-
dotted). One can see that the distributed approach al-
most achieves optimal perfomance, if the detection prob-
ability pD is su�ciently high (Figure 1 a). The distance
to the CKF increases, if the pD becomes lower. This is
due to the fact that the local estimates slightly start to
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V. Evaluation
In the numerical evaluation, a non-linear scenario

with four sensors is presented, which observe range and
bearing of a target, if it exists. Additionally, uniformly
distributed clutter measurements are simulated with a
varying number, which is Poisson distributed with a
mean of 5 (per sensor). The initialization is based on the
first measurement of the target. A White Noise Constant
Acceleration Model is used for the target dynamics and
the sensors are arranged along a circle with a radius
of 9 km from the target’s initial position. Zero-mean
Gaussian noise is added to the actual observations with
a standard deviation 25m in range and 1� in bearing.
For the tracking, variants of the Extended Kalman Filter
(EKF) were used in order to mitigate the non-linearity
in the measurement data with respect to the Cartesian
state space.

We compare the proposed algorithm based on the
Distributed Kalman Filter (DKF) with a centralized ap-
proach (CKF), which receives all measurements from
all sensors at each time step. This would be infeasible
in most practical distributed applications, however, it
provides the results of the “optimal” conditions. Fur-
thermore, we compare against taking the mean of the
local LR score for each local sensor, which is a sound
approach given that all sensors have equal parameters
in all scenarios.

The results of a numerical Monte Carlo evaluation are
shown in Figure 1. The (optimal) centralized approach
is plotted in green (solid line), the proposed method
based on the DKF is blue (dashed) and the mean of the
local Kalman Filters (LKF) are shown in black (dash-
dotted). One can see that the distributed approach al-
most achieves optimal perfomance, if the detection prob-
ability pD is su�ciently high (Figure 1 a). The distance
to the CKF increases, if the pD becomes lower. This is
due to the fact that the local estimates slightly start to
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using the Relaxed Evolution Model
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of measurements ms
k of sensor s at time tk .

It is well-known that in general the local estimates
are correlated due to the common process noise of the
tracked target. Under certain conditions, that is, if the
DKF globalization is applied [8] or if a deterministic
target without process noise is considered [12], the es-
timates are uncorrelated. Without a↵ecting the actual
T2TF proces, we propose an approximation of the fused
posterior without the cross-covariances. This will result
in sub-optimal decisions, however, the applied algorithm
has the following advantage:

• The algorithm can be applied for all kind of Gaus-
sian filters including non-linear scenarios and am-
bigus data interpretation.

• The resulting distributed decision methodology is
very close to the (optimal) centralized solution and
is superior to existing solutions by a clear margin.
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which is an approximation of the optimal fusion, since
cross-correlations are negletcted here. This approxima-
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are the fused parameters, which in this case are inte-
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Filtering:  calculate posterior constants
using the new transmissions.
Update LR score:

The decision is inferred from the information contained
in the set of measurements Zk = {Zk

1 , . . . ,Zk
S } where Zk

s
contains all sensor data of a fixed sensor s up to the
present time tk and S is the number of sensors. The
measurements of sensor s at a given instant of time
tl is denoted by Zs

k = {z1,sl , . . . ,z
ms

l ,s
l }, where ms

l is the
number of measurements. Among this data set, the
target – given that it exists – may have produced (at
most) one measurement with probability pD . All other
measurements are assumed to be caused by clutter or
false detections. Throughout this paper, a fixed and
constant clutter density ⇢F is assumed and a spatial
uniform distribution for the false alarms is assumed in
the field of view. The number of false measurements m
is modeled as a Poisson distribution with mean value �
which is a fixed modeling parameter:

pF(m) =
 
�m

m!

!
e��. (1)

The decision whether a target is present in the data set
Zk can be solved optimally by the Sequential Likelihood
Ratio Test (SLRT) in the sense that given a certain level
of confidence the minimum number of update steps
are required to compute a decision that matches this
confidence.

For the SLRT, the likelihood ratio (LR) at the current
time tk which is given by the fraction

LR(k) =
p(h1|Zk)
p(h0|Zk)

(2)

is computed recursively. At each time step, one can check
if the LR exceeds or falls below one of two thresholds A
and B:
• LR(k) < A: accept h0, i.e. delete track
• LR(k) > B: accept h1, i.e. confirm track
• A < LR(k) < B: continue processing.

The thresholds A and B depend on the level of confi-
dence to confirm only true. targets and reject noise only.

A recursive computation of the LR score is obtained by
a an application of the Bayes theorem on the numerator
and on the denominator:

LR(k) =
p(Zk |h1)
p(Zk |h0)

· p(h1)
p(h0)

(3)

=
p(Zk |h1)
p(Zk |h0)

(4)

where p(h1)
p(h0)

= 1 since p(h1) = p(h0) models equal chances
for both hypotheses prior to the data processing.
Now due to the definition of the conditional density

we have that for both hypotheses i = 0,1

p(Zk |hi ) = p(Zk,Zk�1|hi ) (5)

= p(Zk |Zk�1,hi ) p(Zk�1|hi ). (6)

Furthermore, we use marginalization of the target state
xk 2 Rn at time tk for the numerator which yields
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=
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Therefore one obtains

LR(k) =

R
dxk p(Zk |xk ,h1) p(xk |Zk�1,h1)

p(Zk |h0)
·LR(k � 1) (9)
=:⇤(k) ·LR(k � 1). (10)

In a decentralized decision scheme, local tracking
filters on spatially distributed platforms s = 1, . . . ,S com-
pute their LR score to make a decision based on own
sensor data Zk

s = {Zs
1, . . . ,Z

s
k} only. The set of decisions

may then be exchanged via communication links and the
global decision is made by means of maximum voting
among all agents.
This is di↵erent in the distributed decision setup,

where it is the goal to reconstruct the global LR score
in (10) based on the full information contained in the
set of produced measurements Zk = {Zk

1 , . . . ,Zk
S }. The

optimal result is therefore equivalent to a Centralized
Kalman Filter (CKF), which processes the full set of
measurements from all sensors at each time step. In
practical applications, this approach often is hindered
by limitations in the communication bandwith between
the processing units at the sensor site and the fusion
center as well as by limited processing capabilities.
However, it has been shown, that the DKF provides the
means to reconstruct the optimal global LR score by
the transmission of compact local statistics only [9] for
optimal conditions (full knowledge of the remote sensor
models).
In this paper, an approximation of the global LR score

will be presented for more realistic assumptions. To this
end, two di↵erent cases will be considered:

• (a): The local trackers can be modified.
• (b): The local trackers are readable.

The first case (a) refers to the FKF, where the prediction
step of the local tracks is modified in order to account
for the cross-correlations of the estimation errors, which
comes from the process noise of the jointly observed
targets [3]. In some applications of T2TF, the local tracks
are computed in proprietary black-box systems such
that the corresponding estimate and covariance matrix
cannot be altered. This is what the second case (b)
refers to, in which we will consider the computation of
additional statistics in order to compute the global track
existence decision in the fusion center.

The decision is inferred from the information contained
in the set of measurements Zk = {Zk

1 , . . . ,Zk
S } where Zk
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contains all sensor data of a fixed sensor s up to the
present time tk and S is the number of sensors. The
measurements of sensor s at a given instant of time
tl is denoted by Zs
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l }, where ms

l is the
number of measurements. Among this data set, the
target – given that it exists – may have produced (at
most) one measurement with probability pD . All other
measurements are assumed to be caused by clutter or
false detections. Throughout this paper, a fixed and
constant clutter density ⇢F is assumed and a spatial
uniform distribution for the false alarms is assumed in
the field of view. The number of false measurements m
is modeled as a Poisson distribution with mean value �
which is a fixed modeling parameter:

pF(m) =
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The decision whether a target is present in the data set
Zk can be solved optimally by the Sequential Likelihood
Ratio Test (SLRT) in the sense that given a certain level
of confidence the minimum number of update steps
are required to compute a decision that matches this
confidence.

For the SLRT, the likelihood ratio (LR) at the current
time tk which is given by the fraction

LR(k) =
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is computed recursively. At each time step, one can check
if the LR exceeds or falls below one of two thresholds A
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• LR(k) < A: accept h0, i.e. delete track
• LR(k) > B: accept h1, i.e. confirm track
• A < LR(k) < B: continue processing.

The thresholds A and B depend on the level of confi-
dence to confirm only true. targets and reject noise only.

A recursive computation of the LR score is obtained by
a an application of the Bayes theorem on the numerator
and on the denominator:

LR(k) =
p(Zk |h1)
p(Zk |h0)

· p(h1)
p(h0)

(3)

=
p(Zk |h1)
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(4)

where p(h1)
p(h0)

= 1 since p(h1) = p(h0) models equal chances
for both hypotheses prior to the data processing.
Now due to the definition of the conditional density

we have that for both hypotheses i = 0,1

p(Zk |hi ) = p(Zk,Zk�1|hi ) (5)

= p(Zk |Zk�1,hi ) p(Zk�1|hi ). (6)
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xk 2 Rn at time tk for the numerator which yields
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In a decentralized decision scheme, local tracking
filters on spatially distributed platforms s = 1, . . . ,S com-
pute their LR score to make a decision based on own
sensor data Zk

s = {Zs
1, . . . ,Z

s
k} only. The set of decisions

may then be exchanged via communication links and the
global decision is made by means of maximum voting
among all agents.
This is di↵erent in the distributed decision setup,

where it is the goal to reconstruct the global LR score
in (10) based on the full information contained in the
set of produced measurements Zk = {Zk

1 , . . . ,Zk
S }. The

optimal result is therefore equivalent to a Centralized
Kalman Filter (CKF), which processes the full set of
measurements from all sensors at each time step. In
practical applications, this approach often is hindered
by limitations in the communication bandwith between
the processing units at the sensor site and the fusion
center as well as by limited processing capabilities.
However, it has been shown, that the DKF provides the
means to reconstruct the optimal global LR score by
the transmission of compact local statistics only [9] for
optimal conditions (full knowledge of the remote sensor
models).
In this paper, an approximation of the global LR score

will be presented for more realistic assumptions. To this
end, two di↵erent cases will be considered:

• (a): The local trackers can be modified.
• (b): The local trackers are readable.

The first case (a) refers to the FKF, where the prediction
step of the local tracks is modified in order to account
for the cross-correlations of the estimation errors, which
comes from the process noise of the jointly observed
targets [3]. In some applications of T2TF, the local tracks
are computed in proprietary black-box systems such
that the corresponding estimate and covariance matrix
cannot be altered. This is what the second case (b)
refers to, in which we will consider the computation of
additional statistics in order to compute the global track
existence decision in the fusion center.
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mixture, moment matching can be applied to compute
an approximation in terms of a single Gaussian:
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Using this approximation in the factor ⇤(k) case yields
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An iterative application of the product formula as in (31)
yields
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where the posterior normalization constant is given by
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V. Evaluation
In the numerical evaluation, a non-linear scenario

with four sensors is presented, which observe range and
bearing of a target, if it exists. Additionally, uniformly
distributed clutter measurements are simulated with a
varying number, which is Poisson distributed with a
mean of 5 (per sensor). The initialization is based on the
first measurement of the target. A White Noise Constant
Acceleration Model is used for the target dynamics and
the sensors are arranged along a circle with a radius
of 9 km from the target’s initial position. Zero-mean
Gaussian noise is added to the actual observations with
a standard deviation 25m in range and 1� in bearing.
For the tracking, variants of the Extended Kalman Filter
(EKF) were used in order to mitigate the non-linearity
in the measurement data with respect to the Cartesian
state space.

We compare the proposed algorithm based on the
Distributed Kalman Filter (DKF) with a centralized ap-
proach (CKF), which receives all measurements from
all sensors at each time step. This would be infeasible
in most practical distributed applications, however, it
provides the results of the “optimal” conditions. Fur-
thermore, we compare against taking the mean of the
local LR score for each local sensor, which is a sound
approach given that all sensors have equal parameters
in all scenarios.

The results of a numerical Monte Carlo evaluation are
shown in Figure 1. The (optimal) centralized approach
is plotted in green (solid line), the proposed method
based on the DKF is blue (dashed) and the mean of the
local Kalman Filters (LKF) are shown in black (dash-
dotted). One can see that the distributed approach al-
most achieves optimal perfomance, if the detection prob-
ability pD is su�ciently high (Figure 1 a). The distance
to the CKF increases, if the pD becomes lower. This is
due to the fact that the local estimates slightly start to
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V. Evaluation
In the numerical evaluation, a non-linear scenario

with four sensors is presented, which observe range and
bearing of a target, if it exists. Additionally, uniformly
distributed clutter measurements are simulated with a
varying number, which is Poisson distributed with a
mean of 5 (per sensor). The initialization is based on the
first measurement of the target. A White Noise Constant
Acceleration Model is used for the target dynamics and
the sensors are arranged along a circle with a radius
of 9 km from the target’s initial position. Zero-mean
Gaussian noise is added to the actual observations with
a standard deviation 25m in range and 1� in bearing.
For the tracking, variants of the Extended Kalman Filter
(EKF) were used in order to mitigate the non-linearity
in the measurement data with respect to the Cartesian
state space.

We compare the proposed algorithm based on the
Distributed Kalman Filter (DKF) with a centralized ap-
proach (CKF), which receives all measurements from
all sensors at each time step. This would be infeasible
in most practical distributed applications, however, it
provides the results of the “optimal” conditions. Fur-
thermore, we compare against taking the mean of the
local LR score for each local sensor, which is a sound
approach given that all sensors have equal parameters
in all scenarios.

The results of a numerical Monte Carlo evaluation are
shown in Figure 1. The (optimal) centralized approach
is plotted in green (solid line), the proposed method
based on the DKF is blue (dashed) and the mean of the
local Kalman Filters (LKF) are shown in black (dash-
dotted). One can see that the distributed approach al-
most achieves optimal perfomance, if the detection prob-
ability pD is su�ciently high (Figure 1 a). The distance
to the CKF increases, if the pD becomes lower. This is
due to the fact that the local estimates slightly start to



© Fraunhofer FKIE 25 

NUMERICAL EXAMPLES
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Simulation Setup

For the evaluation, a realistic multi-radar scenario has been chosen:

§ 4 radars arranged along a circle of about 13 km

§ Poisson distributed FA with mean 5 per sensor per scan

§ The target, if present, has a process noise of psd = 10

§ Probability of detection is 𝑝! = 0.2, 0.5 and 𝑝! = 0.9.

§ A no target scenario is also considered

§ We compare against:

§ Centralized processing (CKF) for LR calculation (optimal)

§ Decentralized mean of all local LR scores (LKF)
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Numerical Results of the LR Scores
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Fig. 1. Mean Logarithm of the LR score for 100 Monte Carlo during the first 10 steps of a track existence decision for a probability of detection
(pD ) of 0.9 (a), 0.5 (b), and 0.2 (c). In the simulation run of (d) the target is non-existent.

degenerate in the distributed case while the CKF still has
su�cient detections. This e↵ect is particular strong in
non-linear applications, since the linearization depends
on the quality of the local estimate. However, one can see
that the distributed algorithm outperforms the “naı̈ve”
approach of the LKF. Figure 1 (d) additionally shows an
example of a scenario in which no target is existent. It
becomes obvious, that also in this case, the DKF has a
performance which is nearly optimal and better than the
LKF.

VI. Conclusion
In this paper we revisited the approach for a dis-

tributed detection algorithm which is able to compute
the statistical decision, whether a track exists or not, with
close-to-optimum performance. The method is based on
the product representation of the Distributed Kalman

Filer (DKF), which requires that the measurement mod-
els are known at each time step. We extended this
approach to circumvent this condition such that it can be
applied in non-linear scenarios. To this end, the approx-
imation of the Federated Kalman Filter (FKF) was used.
The method computes su�cient statistics, such that only
one additional reel number must be transmitted to the
fusion center. Moreover, the method can be applied
to arbitrary Track-to-Track-Fusion methods, since it is
independent from the actual fusion process of the track
estimates. In the numerical evaluation, we have shown
that the proposed method achieves a good performance
and beats the standard naı̈ve algorithm in scenarios with
high and with low probability of detection.
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Numerical Results of the LR Scores
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Fig. 1. Mean Logarithm of the LR score for 100 Monte Carlo during the first 10 steps of a track existence decision for a probability of detection
(pD ) of 0.9 (a), 0.5 (b), and 0.2 (c). In the simulation run of (d) the target is non-existent.

degenerate in the distributed case while the CKF still has
su�cient detections. This e↵ect is particular strong in
non-linear applications, since the linearization depends
on the quality of the local estimate. However, one can see
that the distributed algorithm outperforms the “naı̈ve”
approach of the LKF. Figure 1 (d) additionally shows an
example of a scenario in which no target is existent. It
becomes obvious, that also in this case, the DKF has a
performance which is nearly optimal and better than the
LKF.

VI. Conclusion
In this paper we revisited the approach for a dis-

tributed detection algorithm which is able to compute
the statistical decision, whether a track exists or not, with
close-to-optimum performance. The method is based on
the product representation of the Distributed Kalman

Filer (DKF), which requires that the measurement mod-
els are known at each time step. We extended this
approach to circumvent this condition such that it can be
applied in non-linear scenarios. To this end, the approx-
imation of the Federated Kalman Filter (FKF) was used.
The method computes su�cient statistics, such that only
one additional reel number must be transmitted to the
fusion center. Moreover, the method can be applied
to arbitrary Track-to-Track-Fusion methods, since it is
independent from the actual fusion process of the track
estimates. In the numerical evaluation, we have shown
that the proposed method achieves a good performance
and beats the standard naı̈ve algorithm in scenarios with
high and with low probability of detection.
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Numerical Results of the LR Scores
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Fig. 1. Mean Logarithm of the LR score for 100 Monte Carlo during the first 10 steps of a track existence decision for a probability of detection
(pD ) of 0.9 (a), 0.5 (b), and 0.2 (c). In the simulation run of (d) the target is non-existent.

degenerate in the distributed case while the CKF still has
su�cient detections. This e↵ect is particular strong in
non-linear applications, since the linearization depends
on the quality of the local estimate. However, one can see
that the distributed algorithm outperforms the “naı̈ve”
approach of the LKF. Figure 1 (d) additionally shows an
example of a scenario in which no target is existent. It
becomes obvious, that also in this case, the DKF has a
performance which is nearly optimal and better than the
LKF.

VI. Conclusion
In this paper we revisited the approach for a dis-

tributed detection algorithm which is able to compute
the statistical decision, whether a track exists or not, with
close-to-optimum performance. The method is based on
the product representation of the Distributed Kalman

Filer (DKF), which requires that the measurement mod-
els are known at each time step. We extended this
approach to circumvent this condition such that it can be
applied in non-linear scenarios. To this end, the approx-
imation of the Federated Kalman Filter (FKF) was used.
The method computes su�cient statistics, such that only
one additional reel number must be transmitted to the
fusion center. Moreover, the method can be applied
to arbitrary Track-to-Track-Fusion methods, since it is
independent from the actual fusion process of the track
estimates. In the numerical evaluation, we have shown
that the proposed method achieves a good performance
and beats the standard naı̈ve algorithm in scenarios with
high and with low probability of detection.
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Numerical Results of the LR Scores
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Fig. 1. Mean Logarithm of the LR score for 100 Monte Carlo during the first 10 steps of a track existence decision for a probability of detection
(pD ) of 0.9 (a), 0.5 (b), and 0.2 (c). In the simulation run of (d) the target is non-existent.

degenerate in the distributed case while the CKF still has
su�cient detections. This e↵ect is particular strong in
non-linear applications, since the linearization depends
on the quality of the local estimate. However, one can see
that the distributed algorithm outperforms the “naı̈ve”
approach of the LKF. Figure 1 (d) additionally shows an
example of a scenario in which no target is existent. It
becomes obvious, that also in this case, the DKF has a
performance which is nearly optimal and better than the
LKF.

VI. Conclusion
In this paper we revisited the approach for a dis-

tributed detection algorithm which is able to compute
the statistical decision, whether a track exists or not, with
close-to-optimum performance. The method is based on
the product representation of the Distributed Kalman

Filer (DKF), which requires that the measurement mod-
els are known at each time step. We extended this
approach to circumvent this condition such that it can be
applied in non-linear scenarios. To this end, the approx-
imation of the Federated Kalman Filter (FKF) was used.
The method computes su�cient statistics, such that only
one additional reel number must be transmitted to the
fusion center. Moreover, the method can be applied
to arbitrary Track-to-Track-Fusion methods, since it is
independent from the actual fusion process of the track
estimates. In the numerical evaluation, we have shown
that the proposed method achieves a good performance
and beats the standard naı̈ve algorithm in scenarios with
high and with low probability of detection.
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Conclusion

Ø Distributed Sequential Likelihood Ratio for decision on 
target detection has been presented.

Ø Fusion center computes LR score based on single real 
valued parameter from each sensor.

Ø The distributed calculation clearly performs better than 
averaging the local LR scores even with identical sensors 
parameters.

Ø The method can well be applied to real world 
applications.
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