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Why Inertial?

• One sensor suite determines position, 
velocity and attitude

• Immune to interference and jamming
• High data rates (~ 50 – 1000 Hz)
• Low data latencies (nearly instantaneous)
• Relatively noise-less in the short term
• Poor long-term accuracy: not stable, errors 

drift/grow with time
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Two Solutions to Long-Term Error Growth
• One:  Live with it (fly from New York to London 

and you’re only off by about 10 miles when you 
enter British airspace [nav-grade IMU assumed])

• Two: Integrate an external/independent source 
of position to correct (‘aid’) the INS

• Assuming the second choice is preferred, what 
is the optimal way to perform the integration?  
Will the integration accommodate a variety of 
aiding sources?
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INS Error Characteristics

• In an aided-inertial system, we seek to 
estimate and correct the INS errors 
(position, velocity, attitude, sensor errors)

• To do this optimally, we need to 
characterize (i.e., mathematically model) 
these errors

5



INS Errors

Broad categories
• Imperfect mounting of sensors in the box
• Imperfect mounting of the box in the vehicle
• Initialization errors
• Sensor errors
• Gravity model errors
• Computational errors
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0.7 nautical mile

7



This position error slope is 
110 meters per hour
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Short-Term Error Growth from Groves
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100 micro-g per root-Hz 0.1 deg per root-hour



So How Do We Get Rid of 
the Drift?
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Complementary Filtering
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Feedforward GPS-Aided INS
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Predictions/Measurements/Estimates

• The fundamental concept in recursive filtering (i.e., 
recursive estimation) theory is the following:

Estimates are weighted 
combinations of predictions and 
measurements

Estimate = WeightFactorpred*Prediction + WeightFactormeas*Measurement
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Estimation of the Mean (Revisited)

• Recall the LSE of the mean:
• Recursively:
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Recursive Mean Estimation (cont’d)

• The recursive estimation has the form mentioned 
earlier:
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Recursive Mean Estimation (cont’d)

• Note the weighting factors are not constant:
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Recursive Mean Estimation (cont’d)

• At the first update, 100% weight is given to the 
measurement; if there was any a priori knowledge 
available from which to make a prediction, it is thrown 
away as the weighting factor on the ‘prediction’        is 
set to zero

• As time goes on, each successive measurement 
receives less and less weight and the ‘prediction’ 
receives more and more
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Bucket-Full of Resistors Example

• Earlier we mentioned the simple example of an 
unknown resistor and three ohmmeters

• Assuming we only had the measurements from the 
three meters, the best estimate would simply be the 
average (i.e., the sample mean)

• However, what if we knew more about situation?
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Bucket-Full of Resistors (cont’d)

• Reference: Roger M. du Plessis, “Poor Man’s 
Explanation of Kalman Filtering,” North American 
Aviation, Autonetics Division, Anaheim, CA, June 
1967 (currently available from Taygeta).

• Assume we have the following information:
– Resistor is labeled as being nominally 100 ohms with a 

1% tolerance
– The RMS error on each ohmmeter is 3 ohms
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Bucket-Full of Resistors (cont’d)

• Least-squares estimation (sample mean in this case) 
assumes you only have the measurement data and 
nothing else; any other information (if available) is 
thrown away

• Intuitively, it seems perfectly reasonable that we 
should be able to do a better job of estimation if we 
take into account the additional information (nominal 
resistor value and tolerance, ohmmeter accuracy)
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Introducing:  KALMAN!!!

• The answer, of course, is yes and we do it through the 
use of the Kalman Filter

• The least squares recursion has the form:

• Kalman has the following form:
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The Scalar Kalman Update Equation
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Prediction & Measurement

• We need to manipulate the equation a bit to get it into 
our form of measurement and prediction

• Since Hn = 1 in our case:
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Kalman versus Least Squares

• Least Squares:

• Kalman:

• Kn ranges from 0 to 1 thus the Kalman gain determines 
the weighting on the prediction and the measurement

• In order for Kalman to do better than Least Squares, 
Kn must embody the additional information known 
about the problem
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The Kalman Gain

• The equation for the scalar Kalman Gain (stated 
without proof):

– where:            is the prediction error variance
–           is the measurement error variance
– For the resistor example, Hn = 1, thus:
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Understanding the Kalman Gain

• In order to appreciate the influence of the Kalman 
gain, consider what happens as the prediction error 
varies:

• Thus when we have high confidence in our prediction, 
Kn approaches 0 and estimate = prediction:
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Understanding the Kalman Gain (cont’d)

• Conversely, when we have low confidence in our 
prediction, Kn approaches 1 and estimate = 
measurement:

• In actual operation, of course, our predictions lie 
somewhere between perfect and horrible, thus Kn 
strikes just the right balance between prediction and 
measurement
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Relating to the Resistor Example

• For the resistor example, we stated the Kalman Gain was given 
by:

• And specifically:
            = (1 ohm)2 = 1 ohm2 = square of the tolerance (note: at the 

first instant of time, our best prediction is simply the nominal 
resistor value)

            = (3 ohm)2 = 9 ohm2 = square of the rms meter error (in 
this case R is actually a constant so it is not a function of n)
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Computing Prediction Error Variance

• We need the prediction error variance        and the 
measurement error variance        in order to compute 
the Kalman gain

• We are assuming that our measurement error variance 
is a constant

• However, if the Kalman filter is doing its job right, its 
predictions should improve over time

• Thus we need an expression to compute          over 
time

Rn
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Prediction Error Variance (cont’d)

• It turns out that we get our predictions from our 
estimates, so first we must compute the estimation 
error variance:

• However, we are assuming the true value of the 
resistor is a constant (i.e., it does not change no matter 
how many measurements we take).  Thus there are no 
‘system’ dynamics.

• As a result, for a STATIC system, the prediction error 
variance is equal to the estimation error variance:
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Estimation Error Variance

• Let’s check to see if the expression makes sense.  
Since Hn = 1 in this example:

• Also for this example:

• Thus:
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Example Estimation Error Variance

• So for this example: 

• If the measurement error is much larger than the 
estimation error, then the Kalman filter will rely 
primarily on the prediction and the estimation error 
variance is approximately the prediction error 
variance; the converse is also true
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Filter Summary for this Example

• Step 0:  Determine the initial prediction and the 
prediction error variance.  For this case:

• Step 1: Compute the Kalman gain:                                        
(recall Hn = 1 for this example)

• Step 2: Take a measurement (yn) and compute a 
current estimate:
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Summary continued

• Step 3: Compute the estimation error variance:

• Step 4: Predict ahead to the next moment in time:

Again, since this ‘system’ is static, the best prediction is 
simply the previous estimate

xx nn
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Summary (cont’d)

• Step 5:  Compute the prediction error variance

This follows since we set our prediction equal to our 
variance

• Step 6:  Go back to the top of the loop (i.e., go to step 
1 and do it all again)

PP nn =-

+1



Copyright ©2017 by Michael S. Braasch

2 - 24

Theoretical Comparison

• The next plot shows the comparison of theoretical 
performance between Least Squares and Kalman

• Since the standard deviation of the estimation error is 
plotted, the results are known as ensemble statistics
– That is, the plots represent the standard deviation of the 

estimation errors obtained from an infinite number of 
Monte Carlo trials

– Thus, on a particular trial, the Kalman may or may not 
perform this well.  However, ON AVERAGE, Kalman 
will perform better than Least Squares
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Kalman Algorithm Summary

Estimation error 
covariance

prediction

Prediction error 
covariance



INS Error Modeling

• In the typical case of aided-INS, the Kalman 
Filter is estimating INS errors (i.e., position, 
velocity and attitude errors)

• The estimated errors are then subtracted 
from the INS output in order to correct them

• If they are small, the INS errors can be 
modeled linearly so the core Kalman Filter 
framework is satisfied

• Feedback is used to keep the errors small
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Psi-Angle INS Error Model
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INS Error State-Space Model
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In practice, the sensor biases are 
not known and must be estimated.  
The continuous-time form of the system equation is:
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Discretized form is the state-transition matrix
Covariance of this 

vector is Q



Loosely-Coupled GNSS/INS



Tightly-Coupled GNSS/INS Integration



Simple Loosely-Coupled Example

• Simulation of an F-16 trajectory
• Some s-turns as it gradually climbs up to an 

altitude of about 15,000 feet
• Thence proceeding due west for about 25 

minutes and then a turn to the south
• Cruise speed is 389 knots (nautical miles 

per hour)
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Ground Track
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Altitude Profile



Modeling the Nav-grade INS

• Accelerometers biases: ~ 50 micro-gs
• Gyro biases: ~ 0.01 degrees-per-hour
• Initial velocity error:  2 centimeters-per-

second (north and east axes)
• Initial attitude determination error: 0.006 

degrees (each axis)

KF - 11



KF - 12



KF - 13



KF - 14



Regarding State Observability …

In a loosely-coupled GPS-aided INS, the basic 
observable is the difference between GPS-
derived position and INS-derived position

How does attitude error couple into position 
error?
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The Kalman framework is 
readily extensible to a 

variety of aiding sources

17 RUSS COLLEGE OF  ENGINEERING AND TECHNOLOGY



18 RUSS COLLEGE OF  ENGINEERING AND TECHNOLOGY



Aiding sources may 
come and go, but the 
inertial measurement 

unit will remain
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QUESTIONS?
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