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Why Inertial?

* One sensor suite determines position,
velocity and attitude

* Immune to interference and jamming

 High data rates (~ 50 — 1000 Hz)

 Low data latencies (nearly instantaneous)

* Relatively noise-less in the short term

 Poorlong-term accuracy: not stable, errors
drift/grow with time
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Two Solutions to Long-Term Error Growth

* One: Live with it (fly from New York to London
and you’re only off by about 10 miles when you
enter British airspace [nav-grade IMU assumed])

 Two: Integrate an external/independent source
of position to correct (‘aid’) the INS

* Assuming the second choice is preferred, what
is the optimal way to perform the integration?
Will the integration accommodate a variety of
aiding sources?
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Strapdown Processing (continous-time)
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INS Error Characteristics

* Inan aided-inertial system, we seek to
estimate and correct the INS errors
(position, velocity, attitude, sensor errors)

* To do this optimally, we need to
characterize (i.e., mathematically model)

these errors
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INS Errors

Broad categories
* Imperfect mounting of sensors in the box
* Imperfect mounting of the box in the vehicle
* Initialization errors
* Sensor errors
* Gravity model errors
e Computational errors
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Short-Term Error Growth from Groves
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Figure 5.20 Short-term straight-line position error standard deviation growth per axis due to
inertial sensor noise.
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So How Do We Get Rid of
the Drift?
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Complementary Filtering
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Feedforward GPS-Aided INS

Corrected INS
— ; Output #
(truth + INS N
Error) )
— Kalman Filter; Estimate of
(truth + GPS INS Error INS Error
error) Model
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Predictions/Measurements/Estimates

* The fundamental concept in recursive filtering (i.e.,
recursive estimation) theory is the following:

Estimates are weighted
combinations of predictions and
measurements

Estimate = WeightFactor,,.,*Prediction + WeightFactor,,.,;*Measurement

Copyright ©2017 by Michael S. Braasch



Estimation of the Mean (Revisited)

 Recall the LSE of the mean: |Aj = iZN:)(i
N3
* Recursively:

!
_lyl

VA A R R s Y

;\63 ( +y + ) %lzo_( )+y3
3 3-1a 1 R W ]
3 X gy‘ X, n x”_l+;yn

Copyright ©2017 by Michael S. Braasch

A




Recursive Mean Estimation (cont’d)

e The recursive estimation has the form mentioned

earlier:

N\
X

/

estimate

Weighting factors
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Recursive Mean Estimation (cont’d)

* Note the weighting factors are not constant:
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Recursive Mean Estimation (cont’d)

At the first update, 100% weight 1s given to the
measurement; 1f there was any a priori knowledge
available from which to make a prediction, it 1s thfown
away as the weighting factor on the ‘prediction’ . 1s
set to zero

* As time goes on, each successive measurement
recerves less and less weight and the ‘prediction’
recerves more and more
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Bucket-Full of Resistors Example

» Earlier we mentioned the simple example of an
unknown resistor and three ohmmeters

* Assuming we only had the measurements from the
three meters, the best estimate would simply be the
average (1.e., the sample mean)

« However, what if we knew more about situation?
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Bucket-Full of Resistors (cont’d)

« Reference: Roger M. du Plessis, “Poor Man’s
Explanation of Kalman Filtering,” North American
Aviation, Autonetics Division, Anaheim, CA, June
1967 (currently available from Taygeta).

* Assume we have the following information:

— Resistor 1s labeled as being nominally 100 ohms with a
1% tolerance

— The RMS error on each ohmmeter 1s 3 ohms

Copyright ©2017 by Michael S. Braasch



Bucket-Full of Resistors (cont’d)

» Least-squares estimation (sample mean 1n this case)
assumes you only have the measurement data and
nothing else; any other information (1f available) 1s
thrown away

 Intuitively, it seems perfectly reasonable that we
should be able to do a better job of estimation 1f we
take into account the additional information (nominal

resistor value and tolerance, ohmmeter accuracy)
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Introducing: KALMAN!!!

* The answer, of course, 1s yes and we do 1t through the
use of the Kalman Filter

* The least squares recursion has the form:
A n—1Aa 1

=——" +=
xn n xnl y

« Kalman has the following form:

xn_fo”(yn— annj
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The Scalar Kalman Update Equation

ny

Current / /
estimate Data matrix
Kalman (scalar = 1 for the
Gain resistor problem)

Current

rediction
p Current

measurement
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Prediction & Measurement

* We need to manipulate the equation a bit to get 1t into
our form of measurement and prediction

* Since H, =1 in our case:

N\ N\

xn:fo"(yn_xn]
- *K.y K.
-(-K.)% +K.,

n
Copyright ©2017 by Michael S. Braasch
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Kalman versus Least Squares

Least Squares: A n—=1Aa |
- +— y
xn n xn 1

Kalman: ;\Cn = (1 _K’”’);\Cn +K.),

K, ranges from O to 1 thus the Kalman gain determines
the weighting on the prediction and the measurement

In order for Kalman to do better than Least Squares,
K, must embody the additional information known
about the problem
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The Kalman Gain

* The equation for the scalar Kalman Gain (stated
without proof): P H

K.= T
H.p,H +R,

— where: P . 1s the prediction error variance
— Rn 1s the measurement error variance
— For the resistor example, H, = 1, thus:

__ P,
Kb R

Copyright ©2017 by Michael S. Braasch
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Understanding the Kalman Gain

 In order to appreciate the influence of the Kalman
gain, consider what happens as the prediction error

varies: P, 0
LimK.=Limp R,

P _
LimK.=Lim ="

* Thus when we have high confidence 1n our prediction,
K, approaches 0 and estimate = prediction:

LK) Ky, -

X
Copyright ©2017 by Michael S. Braasch
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Understanding the Kalman Gain (cont’d)

Conversely, when we have low confidence 1n our

prediction, K, approaches 1 and estimate =
measurement:

A A
L =l-K)I K, »,=,
In actual operation, of course, our predictions lie
somewhere between perfect and horrible, thus K
strikes just the right balance between prediction and
measurement
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Relating to the Resistor Example

* For the resistor example, we stated the Kalman Gain was given
by: K - P
P.*R,

* And specifically:

Pl_ = (1 ohm)? = 1 ohm? = square of the tolerance (note: at the
first instant of time, our best prediction 1s simply the nominal
resistor value)

R = (3 ohm)? = 9 ohm? = square of the rms meter error (in
this case R 1s actually a constant so 1t 1s not a function of n)

Copyright ©2017 by Michael S. Braasch



Computing Prediction Error Variance

We need the prediction error variance P and the
measurement error variance IR, in order to compute
the Kalman gain

We are assuming that our measurement error variance
1S a constant

However, if the Kalman filter 1s doing its job right, its
predictions should improve over time

Thus we need an expression to compute P over
time

Copyright ©2017 by Michael S. Braasch



Prediction Error Variance (cont’d)

* It turns out that we get our predictions from our
estimates, so first we must compute the estimation

error variance: P - ([ K. Hn) P;

 However, we are assuming the true value of the
resistor 1S a constant (1.e., it does not change no matter
how many measurements we take). Thus there are no
‘system’ dynamics.

* As aresult, for a STATIC system, the prediction error
variance 1s equal to the estimation error variance:

P..=P,

Copyright ©2017 by Michael S. Braasch



Estimation Error Variance

* Let’s check to see if the expression makes sense.

Since H, = 1 1n this example: P = (I -K )P‘

* Also for this example: K = P n

P.*R,
e Thus: P, _
P 155 P

PlP+R) PP, PR
P.*R, P.*R, PR,

Copyright ©2017 by Michael S. Braasch

- 19



Example Estimation Error Variance

* So for this example: ~ P.R,
P.=—
P.* R,
 If the measurement error 1s much larger than the
estimation error, then the Kalman filter will rely
primarily on the prediction and the estimation error

variance 1s approximately the prediction error
variance; the converse 1s also true

P.R, _
R,

Copyright ©2017 by Michael S. Braasch
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Filter Summary for this Example

« Step 0: Determine the initial prediction and the
prediction error variance. For this case:

A\

=100 ohms = 2
X, P, =1 ohms

1

T

 Step 1: Compute the Kalman gain: K, = P_"H}“
(recall H, = 1 for this example) H,P,H *R,

« Step 2: Take a measurement (y,) and compute a

current estimate: _ _
A A

AN
— +
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Summary continued

» Step 3: Compute the estimation error variance:

P.=(I -K.H,)P,

» Step 4: Predict ahead to the next moment 1n time:

A N\

xn+1 xn
Again, since this ‘system’ 1s static, the best prediction 1s
simply the previous estimate

Copyright ©2017 by Michael S. Braasch



Summary (cont’d)

* Step 5: Compute the prediction error variance
P n+l - P n

This follows since we set our prediction equal to our
variance

* Step 6: Go back to the top of the loop (1.e., go to step
1 and do 1t all again)

Copyright ©2017 by Michael S. Braasch



Theoretical Comparison

* The next plot shows the comparison of theoretical
performance between Least Squares and Kalman

 Since the standard deviation of the estimation error 1s
plotted, the results are known as ensemble statistics
— That is, the plots represent the standard deviation of the

estimation errors obtained from an infinite number of
Monte Carlo trials

— Thus, on a particular trial, the Kalman may or may not
perform this well. However, ON AVERAGE, Kalman
will perform better than Least Squares

Copyright ©2017 by Michael S. Braasch



estimation error standard deviation in ochms

N
tn

-

-—
M

—

0.5
0

Bucket-Full of Resistors Example

1 I I 1 1 1 1 1

Least Squares Estimation -

Kalman Filter

2 4 B 8 10 12 14 16 18 20
iteration number: number of meters utilized

Copyright ©2017 by Michael S. Braasch



KF -1

Kalman Algorithm Summary
Step 0:  Choose X, and determine P~

1

Step 1: Kk=P;H:(HkP;HI{+Rk)
Step 2: )Ack=§;+Kk(Zk—Hk§k_)

S tep 3; P P = (I _ K . H k)P; Estimation error

covariance

Step 4: i;_l_l — ¢kik prediction

. - T rediction error
Step S} Pk+l o ¢k Pk¢k T Qk ' cccl)vetriance
Go to Stepl
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INS Error Modeling

In the typical case of aided-INS, the Kalman
Filter is estimating INS errors (i.e., position,
velocity and attitude errors)

The estimated errors are then subtracted
from the INS output in order to correct them
If they are small, the INS errors can be
modeled linearly so the core Kalman Filter
framework is satisfied

Feedback is used to keep the errors small
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Psi-Angle INS Error Model
OR =—w' x SR + 06V

bl —C1

oV’ =Cﬁﬂb+%c—w”><f—(2gfe +QZC)><5VC

" p p p p b
Y =—w, XY —Cy 0wy,

References
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Benson, D., “A Comparison of Two Approaches to Pure-Inertial and Doppler-Inertial
Error Analysis,” IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-
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INS Error State-Space Model

[ SR ' [—Qf,c x] I 0 5R ’ 3 0 o 0
oV |= 4 [—(nge +Q§c)x] [ f’ x] 8V |+| 0 C 0 5f"
! Y ) 0 0 [—(Q§;+Q§c)x] ! ¥ . 00 -G || @ 7

where: ‘0’ is a 3x3 matrix of zeros, ‘I’ is a 3x3 identity matrix, W is
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In practice, the sensor biases are
not known and must be estimated.
The continuous-time form of the system equation is:

[‘ch x] I 0,,5 0,5 05
OR [ ] 5 OR U
— ~ (2w, + @ c 0 — )
6_V W l (ZQM + Qec) xJ I— I:Z X] ] Cb 3x3 (S_V 03x1
Yy o= 05,3 05,3 l—(Qfe + ch) XJ 0,, -G [ 05,
-b b
6 _1 6 Qacc
_f 03x3 O3x3 O3x3 - I O3x3 _fb
S, Tace Sw!, Neyr
ow g4 | |1 _
03x3 O3x3 0313 O3x3 I
‘L'gyr |
/ Covariance of this
Discretized form is the state-transition matrix vector 1s Q
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Loosely-Coupled GNSS/INS

; IMU
GPS RF Recerver
GPS Me:surement i it delta-Vs l delta-thetas
Processor )
i [nertial Nav |
GPS Kalman Filter INS/GPS Equations
Integration Kalman
Pos / Vel (at I Filter Pos / Vel / Attitude
low rate, e.g., I
1/10 Hz)

INS Corrections

Adapted from: Groves, P., Principles of GNSS, Inertial and Multisensor Integrated Navigation Systems, 2008.
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Tightly-Coupled GNSS/INS Integration

-+

; IMU
GPS RF Receiver
GPS Meisuremem “ Yelooly delta-Vsl delta-thetas
Processor ]
Inertial Nav
PR, delta-PR INS/GPS Equations
: » Integration Kalman
Satellite pos & vel : «
Filter Pos / Vel / Attitude
|

INS Corrections

Adapted from: Groves, P, Principles of GNSS, Inertial and Multisensor Integrated Navigation Systems, 2008.
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Simple Loosely-Coupled Example

 Simulation of an F-16 trajectory

* Some s-turns as it gradually climbs up to an
altitude of about 15,000 feet

* Thence proceeding due west for about 25
minutes and then a turn to the south

* Cruise speed is 389 knots (nautical miles
per hour)
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simulated F-16 Flight Path
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Modeling the Nav-grade INS

 Accelerometers biases: ~ 50 micro-gs

* Q@Gyro biases: ~ 0.01 degrees-per-hour

* |nitial velocity error: 2 centimeters-per-
second (north and east axes)

e [|nitial attitude determination error: 0.006
degrees (each axis)
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East/Morth/Up Position Error in Meters

time in minutes
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Velocity Error in Meters/Second

time in minutes

=g OHIO

UNIVERSITY




¥-comp /£ roll

i
O

=
=P

—
o
o
y
=

Z-comp / yaw

time in minutes

UNIVERSITY




KF - 15

Regarding State Observability ...

In a loosely-coupled GPS-aided INS, the basic
observable is the difference between GPS-
derived position and INS-derived position

How does attitude error couple into position
error?
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OR = -w', x SR' + V'

—et

oV’ =C;gb+6_gc—%pxic—(2w? +w,

—1e —ec

- P p p p b
Y =—w, XY —Cy 0wy,




The Kalman framework is
readily extensible to a
variety of aiding sources
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Aiding sources may
come and go, but the
inertial measurement

unit will remain
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