

AESS Distinguished Lecturer

Prof. Marina Ruggieri

University of Roma «Tor Vergata», Italy

SPACE SUSTAINABILITY

Engineering a Responsible Future of Space

OUTLINE

- Sustainability: a Holistic Concept
- Are Space Trends Sustainable?
- Space Sustainability by Design
- Ally Technologies
- Perspectives

SUSTAINABILITY: A HOLISTIC CONCEPT

What are we doing to Earth?

SUSTAINABILITY: A HOLISTIC CONCEPT

MORE QUESTIONS THAN ANSWERS

What are we doing to Space?

Are space actors fully aware?

How can we approach Moon and Mars with the current space sustainability model?

ARE SPACE TRENDS SUSTAINABLE?

GO MEGA!

ARE SPACE TRENDS SUSTAINABLE?

GO SMALL!

ARE SPACE TRENDS SUSTAINABLE?

REMOVAL OF SPACE JUNK

A completely new approach to the conceivement, design and implementation of space systems is needed to:

STOP POLLUTING

• **REPAIR DAMAGES**

Priorities need to be changed to change the trend, with consequences at various levels:

• **RESEARCH**

COORDINATION

• INVESTMENTS AND MARKET

Key strategies for the evolution framework of a sustainable space:

Upcycling and Recycling

- Sustainable materials
- Sustainable management

Upcycling and Recycling is based on the intelligent and flexible reuse, integration and modification of:

- Space networks
- Space nodes
- Missions and services

Flexibility is supported by system design choices, such as:

Inter-satellite link Data relay

On-board Routing

New constellation concepts

Innovative Control Center

Upcycling and Recycling strategies:

Backward compatibility

Forward compatibility

BACKWARD COMPATIBILITY needs for:

Knowledge about existing systems

Design for suitable integration

Coordination

FORWARD COMPATIBILITY needs for:

• Knowledge about future systems

Design for suitable integration

Coordination

Software-Defined techniques

Extremely High Frequencies devices

Artificial Intelligence algorithms

SOFTWARE-DEFINED APPROACH

Software-Defined Networking (SDN)

Software-Defined Storage (SDS)

Software-Defined Data Center (SDDC)

• Software-Defined Everything (SDE)

EHF (Q/V & W band)

EHF (Q/V & W band)

Kourou - July **25, 2013**

Alphasat embarkes TDP#5 payload

Artificial Intelligence as key of the human-robot cooperative approach in manned space operations and missions:

 Human body cooperation in the network (body as a network node)

• Human-robot super-node

Body as a Network Node (ByN)

Intra-body, wearable and external devices

Robot as a Network Node (RoN)

Human-Robot advanced Cooperation within a ByRoN super-node

Human-Robot P2P
approach

- Joint decision-making
- Joint operations
 - Common network interface

ByRoN in manned space missions

- **Spacecraft** (enhanced digital capabilities)
- **Spacecraft** (reduced delay effects)
 - Lander/Rover (enhanced digital capabilities)

PERSPECTIVES

- 6G could be an enabler to space sustainability
- In fact, resolution of human needs and social issues is core of the 5G-to-6G transition
- 6G-Space integration must then be/become intrinsically sustainable for both Earth and Space

PERSPECTIVES

• Space sustainability calls for a profound change in priorities and paradigm in the space community

• A broad awareness and an active behavior in Earth sustainability matter are key to success in the space sustainability challenge.

SUGGESTED READING [1/2]

[1] E. Cianca, M. De Sanctis, T. Rossi, M Ruggieri, (2024) "*Advanced Technologies for a Sustainable Future of Space*", IEEE COMPUTER, Special Issue on Tech Predictions 2024, August, Vol. 57, pp. 45-54, ISSN 0018-9162, DOI 10.1109/MC.2024.3402083.

[2] E. Cianca, J. Dauncey, G. Fasano, Z.M. Kassas, W. Neil, M. Ruggieri, (2024) *"Autonomy for Sustainability: An AESS Vision and Perspectives"*, IEEE Aerospace and Electronic Systems Magazine, June, Vol. 39, Issue 6, pp. 32-41, ISSN 0885-8985, DOI 10.1109/MAES.2024.3376295.

SUGGESTED READING [2/2]

[3] E. Cianca, S. Morosi, M. Ruggieri, (2023), *"Technologies and Infrastructures for a Sustainable Space"*, Chapter 8 in *"*A Roadmap to Future Space Connectivity - Satellite and Interplanetary Networks", Springer, ISBN 978-3-031-30761-4, pp. 185-200, DOI 10.1007/978-3-031-30762-1_8.

[4] E. Cianca, M Ruggieri, (2023) "*Space Sustainability: Toward the Future of Connectivity*", Chapter 3 in "Women in Telecommunications", Springer, ISBN 978-3-031-21974-0, pp. 375-391, DOI 10.1007/978-3-031-21975-7_14.

