Paper

Particle Filter Theory and Practice with Positioning Applications

Volume Number:
25
Issue Number:
7
Pages:
Starting page
53
Ending page
82
Publication Date:
Publication Date
August 2010
Author(s)

paper Menu

Abstract

The particle filter (PF) was introduced in 1993 as a numerical approximation to the nonlinear Bayesian filtering problem, and there is today a rather mature theory as well as a number of successful applications described in literature. This tutorial serves two purposes: to survey the part of the theory that is most important for applications and to survey a number of illustrative positioning applications from which conclusions relevant for the theory can be drawn. The theory part first surveys the nonlinear filtering problem and then describes the general PF algorithm in relation to classical solutions based on the extended Kalman filter (EKF) and the point mass filter (PMF). Tuning options, design alternatives, and user guidelines are described, and potential computational bottlenecks are identified and remedies suggested. Finally, the marginalized (or Rao-Blackwellized) PF is overviewed as a general framework for applying the PF to complex systems. The application part is more or less a stand-alone tutorial without equations that does not require any background knowledge in statistics or nonlinear filtering. It describes a number of related positioning applications where geographical information systems provide a nonlinear measurement and where it should be obvious that classical approaches based on Kalman filters (KFs) would have poor performance. All applications are based on real data and several of them come from real-time implementations. This part also provides complete code examples.i

Country
SWE
Affiliation
Linkoping University
IEEE Region
Region 8 (Africa, Europe, Middle East)