Paper

PHD Filters of Higher Order in Target Number

Volume Number:
43
Issue Number:
4
Pages:
Starting page
1523
Ending page
1543
Publication Date:
Publication Date
October 2007
Author(s)

paper Menu

Abstract

The multitarget recursive Bayes nonlinear filter is the theoretically optimal approach to multisensor-multitarget detection, tracking, and identification. For applications in which this filter is appropriate, it is likely to be tractable for only a small number of targets. In earlier papers we derived closed-form equations for an approximation of this filter based on propagation of a first-order multitarget moment called the probability hypothesis density (PHD). In a recent paper, Erdinc, Willett, and Bar-Shalom argued for the need for a PHD-type filter which remains first-order in the states of individual targets, but which is higher-order in target number. In this paper we show that this is indeed possible. We derive a closed-form cardinalized PHD (CPHD) filter, which propagates not only the PHD but also the entire probability distribution on target number.