Paper

Dual-Function MIMO Radar Communications System Design Via Sparse Array Optimization

Volume Number:
55
Issue Number:
3
Pages:
Starting page
1213
Ending page
1226
Publication Date:
Publication Date
1 June 2019

paper Menu

Abstract

Spectrum congestion and competition over frequency bandwidth could be alleviated by deploying dual-function radar-communications systems, where the radar platform presents itself as a system of opportunity to secondary communication functions. In this paper, we propose a new technique for communication information embedding into the emission of multiple-input multiple-output (MIMO) radar using sparse antenna array configurations. The phases induced by antenna displacements in a sensor array are unique, which makes array configuration feasible for symbol embedding. We also exploit the fact that in a MIMO radar system, the association of independent waveforms with the transmit antennas can change over different pulse repetition periods without impacting the radar functionality. We show that by reconfiguring sparse transmit array through antenna selection and reordering waveform-antenna pairing, a data rate of megabits per second can be achieved for a moderate number of transmit antennas. To counteract practical implementation issues, we propose a regularized antenna-selection-based signaling scheme. The possible data rate is analyzed and the symbol/bit error rates are derived. Simulation examples are provided for performance evaluations and to demonstrate the effectiveness of proposed dual-function radar-communication techniques.

Country
CHN
Affiliation
Beihang University
IEEE Region
Region 10 (Asia and Pacific)
Email
Country
USA
Affiliation
Villanova University
IEEE Region
Region 2 (Eastern U.S.)
Email